File size: 7,516 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for DeiT."""

from typing import List, Optional, Union

import numpy as np
from PIL import Image

from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from ...file_utils import TensorType
from ...image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ImageFeatureExtractionMixin, is_torch_tensor
from ...utils import logging


logger = logging.get_logger(__name__)


class DeiTFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMixin):
    r"""
    Constructs a DeiT feature extractor.

    This feature extractor inherits from :class:`~transformers.FeatureExtractionMixin` which contains most of the main
    methods. Users should refer to this superclass for more information regarding those methods.

    Args:
        do_resize (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether to resize the input to a certain :obj:`size`.
        size (:obj:`int` or :obj:`Tuple(int)`, `optional`, defaults to 256):
            Resize the input to the given size. If a tuple is provided, it should be (width, height). If only an
            integer is provided, then the input will be resized to (size, size). Only has an effect if :obj:`do_resize`
            is set to :obj:`True`.
        resample (:obj:`int`, `optional`, defaults to :obj:`PIL.Image.BICUBIC`):
            An optional resampling filter. This can be one of :obj:`PIL.Image.NEAREST`, :obj:`PIL.Image.BOX`,
            :obj:`PIL.Image.BILINEAR`, :obj:`PIL.Image.HAMMING`, :obj:`PIL.Image.BICUBIC` or :obj:`PIL.Image.LANCZOS`.
            Only has an effect if :obj:`do_resize` is set to :obj:`True`.
        do_center_crop (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether to crop the input at the center. If the input size is smaller than :obj:`crop_size` along any edge,
            the image is padded with 0's and then center cropped.
        crop_size (:obj:`int`, `optional`, defaults to 224):
            Desired output size when applying center-cropping. Only has an effect if :obj:`do_center_crop` is set to
            :obj:`True`.
        do_normalize (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether or not to normalize the input with :obj:`image_mean` and :obj:`image_std`.
        image_mean (:obj:`List[int]`, defaults to :obj:`[0.485, 0.456, 0.406]`):
            The sequence of means for each channel, to be used when normalizing images.
        image_std (:obj:`List[int]`, defaults to :obj:`[0.229, 0.224, 0.225]`):
            The sequence of standard deviations for each channel, to be used when normalizing images.
    """

    model_input_names = ["pixel_values"]

    def __init__(
        self,
        do_resize=True,
        size=256,
        resample=Image.BICUBIC,
        do_center_crop=True,
        crop_size=224,
        do_normalize=True,
        image_mean=None,
        image_std=None,
        **kwargs
    ):
        super().__init__(**kwargs)
        self.do_resize = do_resize
        self.size = size
        self.resample = resample
        self.do_center_crop = do_center_crop
        self.crop_size = crop_size
        self.do_normalize = do_normalize
        self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
        self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD

    def __call__(
        self,
        images: Union[
            Image.Image, np.ndarray, "torch.Tensor", List[Image.Image], List[np.ndarray], List["torch.Tensor"]  # noqa
        ],
        return_tensors: Optional[Union[str, TensorType]] = None,
        **kwargs
    ) -> BatchFeature:
        """
        Main method to prepare for the model one or several image(s).

        .. warning::

           NumPy arrays and PyTorch tensors are converted to PIL images when resizing, so the most efficient is to pass
           PIL images.

        Args:
            images (:obj:`PIL.Image.Image`, :obj:`np.ndarray`, :obj:`torch.Tensor`, :obj:`List[PIL.Image.Image]`, :obj:`List[np.ndarray]`, :obj:`List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
                number of channels, H and W are image height and width.

            return_tensors (:obj:`str` or :class:`~transformers.file_utils.TensorType`, `optional`, defaults to :obj:`'np'`):
                If set, will return tensors of a particular framework. Acceptable values are:

                * :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects.
                * :obj:`'pt'`: Return PyTorch :obj:`torch.Tensor` objects.
                * :obj:`'np'`: Return NumPy :obj:`np.ndarray` objects.
                * :obj:`'jax'`: Return JAX :obj:`jnp.ndarray` objects.

        Returns:
            :class:`~transformers.BatchFeature`: A :class:`~transformers.BatchFeature` with the following fields:

            - **pixel_values** -- Pixel values to be fed to a model, of shape (batch_size, num_channels, height,
              width).
        """
        # Input type checking for clearer error
        valid_images = False

        # Check that images has a valid type
        if isinstance(images, (Image.Image, np.ndarray)) or is_torch_tensor(images):
            valid_images = True
        elif isinstance(images, (list, tuple)):
            if len(images) == 0 or isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0]):
                valid_images = True

        if not valid_images:
            raise ValueError(
                "Images must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single example),"
                "`List[PIL.Image.Image]`, `List[np.ndarray]` or `List[torch.Tensor]` (batch of examples)."
            )

        is_batched = bool(
            isinstance(images, (list, tuple))
            and (isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0]))
        )

        if not is_batched:
            images = [images]

        # transformations (resizing + center cropping + normalization)
        if self.do_resize and self.size is not None and self.resample is not None:
            images = [self.resize(image=image, size=self.size, resample=self.resample) for image in images]
        if self.do_center_crop and self.crop_size is not None:
            images = [self.center_crop(image, self.crop_size) for image in images]
        if self.do_normalize:
            images = [self.normalize(image=image, mean=self.image_mean, std=self.image_std) for image in images]

        # return as BatchFeature
        data = {"pixel_values": images}
        encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)

        return encoded_inputs