Spaces:
Sleeping
Sleeping
File size: 5,824 Bytes
2260825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
# coding=utf-8
# Copyright 2018 Salesforce and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Salesforce CTRL configuration """
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"}
class CTRLConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a :class:`~transformers.CTRLModel` or a
:class:`~transformers.TFCTRLModel`. It is used to instantiate a CTRL model according to the specified arguments,
defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration
to that of the `ctrl <https://huggingface.co/ctrl>`__ architecture from SalesForce.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
vocab_size (:obj:`int`, `optional`, defaults to 246534):
Vocabulary size of the CTRL model. Defines the number of different tokens that can be represented by the
:obj:`inputs_ids` passed when calling :class:`~transformers.CTRLModel` or
:class:`~transformers.TFCTRLModel`.
n_positions (:obj:`int`, `optional`, defaults to 256):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
n_ctx (:obj:`int`, `optional`, defaults to 256):
Dimensionality of the causal mask (usually same as n_positions).
n_embd (:obj:`int`, `optional`, defaults to 1280):
Dimensionality of the embeddings and hidden states.
dff (:obj:`int`, `optional`, defaults to 8192):
Dimensionality of the inner dimension of the feed forward networks (FFN).
n_layer (:obj:`int`, `optional`, defaults to 48):
Number of hidden layers in the Transformer encoder.
n_head (:obj:`int`, `optional`, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
resid_pdrop (:obj:`float`, `optional`, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
embd_pdrop (:obj:`int`, `optional`, defaults to 0.1):
The dropout ratio for the embeddings.
attn_pdrop (:obj:`float`, `optional`, defaults to 0.1):
The dropout ratio for the attention.
layer_norm_epsilon (:obj:`float`, `optional`, defaults to 1e-6):
The epsilon to use in the layer normalization layers
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not the model should return the last key/values attentions (not used by all models).
Examples::
>>> from transformers import CTRLModel, CTRLConfig
>>> # Initializing a CTRL configuration
>>> configuration = CTRLConfig()
>>> # Initializing a model from the configuration
>>> model = CTRLModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
"""
model_type = "ctrl"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=246534,
n_positions=256,
n_ctx=256,
n_embd=1280,
dff=8192,
n_layer=48,
n_head=16,
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-6,
initializer_range=0.02,
summary_type="cls_index",
summary_use_proj=True,
summary_activation=None,
summary_proj_to_labels=True,
summary_first_dropout=0.1,
use_cache=True,
**kwargs
):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.n_ctx = n_ctx
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.dff = dff
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.summary_type = summary_type
self.summary_use_proj = summary_use_proj
self.summary_activation = summary_activation
self.summary_first_dropout = summary_first_dropout
self.summary_proj_to_labels = summary_proj_to_labels
self.use_cache = use_cache
@property
def max_position_embeddings(self):
return self.n_positions
@property
def hidden_size(self):
return self.n_embd
@property
def num_attention_heads(self):
return self.n_head
@property
def num_hidden_layers(self):
return self.n_layer
|