File size: 3,380 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.

# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING

from ...file_utils import _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available


_import_structure = {
    "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig"],
    "tokenization_convbert": ["ConvBertTokenizer"],
}

if is_tokenizers_available():
    _import_structure["tokenization_convbert_fast"] = ["ConvBertTokenizerFast"]

if is_torch_available():
    _import_structure["modeling_convbert"] = [
        "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
        "ConvBertForMaskedLM",
        "ConvBertForMultipleChoice",
        "ConvBertForQuestionAnswering",
        "ConvBertForSequenceClassification",
        "ConvBertForTokenClassification",
        "ConvBertLayer",
        "ConvBertModel",
        "ConvBertPreTrainedModel",
        "load_tf_weights_in_convbert",
    ]


if is_tf_available():
    _import_structure["modeling_tf_convbert"] = [
        "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
        "TFConvBertForMaskedLM",
        "TFConvBertForMultipleChoice",
        "TFConvBertForQuestionAnswering",
        "TFConvBertForSequenceClassification",
        "TFConvBertForTokenClassification",
        "TFConvBertLayer",
        "TFConvBertModel",
        "TFConvBertPreTrainedModel",
    ]


if TYPE_CHECKING:
    from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig
    from .tokenization_convbert import ConvBertTokenizer

    if is_tokenizers_available():
        from .tokenization_convbert_fast import ConvBertTokenizerFast

    if is_torch_available():
        from .modeling_convbert import (
            CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            ConvBertForMaskedLM,
            ConvBertForMultipleChoice,
            ConvBertForQuestionAnswering,
            ConvBertForSequenceClassification,
            ConvBertForTokenClassification,
            ConvBertLayer,
            ConvBertModel,
            ConvBertPreTrainedModel,
            load_tf_weights_in_convbert,
        )

    if is_tf_available():
        from .modeling_tf_convbert import (
            TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
            TFConvBertForMaskedLM,
            TFConvBertForMultipleChoice,
            TFConvBertForQuestionAnswering,
            TFConvBertForSequenceClassification,
            TFConvBertForTokenClassification,
            TFConvBertLayer,
            TFConvBertModel,
            TFConvBertPreTrainedModel,
        )


else:
    import sys

    sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)