File size: 9,021 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image/Text processor class for CLIP
"""
from ...tokenization_utils_base import BatchEncoding
from .feature_extraction_clip import CLIPFeatureExtractor
from .tokenization_clip import CLIPTokenizer


class CLIPProcessor:
    r"""
    Constructs a CLIP processor which wraps a CLIP feature extractor and a CLIP tokenizer into a single processor.

    :class:`~transformers.CLIPProcessor` offers all the functionalities of :class:`~transformers.CLIPFeatureExtractor`
    and :class:`~transformers.CLIPTokenizer`. See the :meth:`~transformers.CLIPProcessor.__call__` and
    :meth:`~transformers.CLIPProcessor.decode` for more information.

    Args:
        feature_extractor (:class:`~transformers.CLIPFeatureExtractor`):
            The feature extractor is a required input.
        tokenizer (:class:`~transformers.CLIPTokenizer`):
            The tokenizer is a required input.
    """

    def __init__(self, feature_extractor, tokenizer):
        if not isinstance(feature_extractor, CLIPFeatureExtractor):
            raise ValueError(
                f"`feature_extractor` has to be of type CLIPFeatureExtractor, but is {type(feature_extractor)}"
            )
        if not isinstance(tokenizer, CLIPTokenizer):
            raise ValueError(f"`tokenizer` has to be of type CLIPTokenizer, but is {type(tokenizer)}")

        self.feature_extractor = feature_extractor
        self.tokenizer = tokenizer
        self.current_processor = self.feature_extractor

    def save_pretrained(self, save_directory):
        """
        Save a CLIP feature extractor object and CLIP tokenizer object to the directory ``save_directory``, so that it
        can be re-loaded using the :func:`~transformers.CLIPProcessor.from_pretrained` class method.

        .. note::

            This class method is simply calling :meth:`~transformers.PreTrainedFeatureExtractor.save_pretrained` and
            :meth:`~transformers.tokenization_utils_base.PreTrainedTokenizer.save_pretrained`. Please refer to the
            docstrings of the methods above for more information.

        Args:
            save_directory (:obj:`str` or :obj:`os.PathLike`):
                Directory where the feature extractor JSON file and the tokenizer files will be saved (directory will
                be created if it does not exist).
        """

        self.feature_extractor.save_pretrained(save_directory)
        self.tokenizer.save_pretrained(save_directory)

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        r"""
        Instantiate a :class:`~transformers.CLIPProcessor` from a pretrained CLIP processor.

        .. note::

            This class method is simply calling CLIPFeatureExtractor's
            :meth:`~transformers.PreTrainedFeatureExtractor.from_pretrained` and CLIPTokenizer's
            :meth:`~transformers.tokenization_utils_base.PreTrainedTokenizer.from_pretrained`. Please refer to the
            docstrings of the methods above for more information.

        Args:
            pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
                This can be either:

                - a string, the `model id` of a pretrained feature_extractor hosted inside a model repo on
                  huggingface.co. Valid model ids can be located at the root-level, like ``clip-vit-base-patch32``, or
                  namespaced under a user or organization name, like ``openai/clip-vit-base-patch32``.
                - a path to a `directory` containing a feature extractor file saved using the
                  :meth:`~transformers.PreTrainedFeatureExtractor.save_pretrained` method, e.g.,
                  ``./my_model_directory/``.
                - a path or url to a saved feature extractor JSON `file`, e.g.,
                  ``./my_model_directory/preprocessor_config.json``.

            **kwargs
                Additional keyword arguments passed along to both :class:`~transformers.PreTrainedFeatureExtractor` and
                :class:`~transformers.PreTrainedTokenizer`
        """
        feature_extractor = CLIPFeatureExtractor.from_pretrained(pretrained_model_name_or_path, **kwargs)
        tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)

        return cls(feature_extractor=feature_extractor, tokenizer=tokenizer)

    def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
        """
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the
        :obj:`text` and :obj:`kwargs` arguments to CLIPTokenizer's :meth:`~transformers.CLIPTokenizer.__call__` if
        :obj:`text` is not :obj:`None` to encode the text. To prepare the image(s), this method forwards the
        :obj:`images` and :obj:`kwrags` arguments to CLIPFeatureExtractor's
        :meth:`~transformers.CLIPFeatureExtractor.__call__` if :obj:`images` is not :obj:`None`. Please refer to the
        doctsring of the above two methods for more information.

        Args:
            text (:obj:`str`, :obj:`List[str]`, :obj:`List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                :obj:`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            images (:obj:`PIL.Image.Image`, :obj:`np.ndarray`, :obj:`torch.Tensor`, :obj:`List[PIL.Image.Image]`, :obj:`List[np.ndarray]`, :obj:`List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
                number of channels, H and W are image height and width.

            return_tensors (:obj:`str` or :class:`~transformers.file_utils.TensorType`, `optional`):
                If set, will return tensors of a particular framework. Acceptable values are:

                * :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects.
                * :obj:`'pt'`: Return PyTorch :obj:`torch.Tensor` objects.
                * :obj:`'np'`: Return NumPy :obj:`np.ndarray` objects.
                * :obj:`'jax'`: Return JAX :obj:`jnp.ndarray` objects.

        Returns:
            :class:`~transformers.BatchEncoding`: A :class:`~transformers.BatchEncoding` with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when :obj:`text` is not :obj:`None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              :obj:`return_attention_mask=True` or if `"attention_mask"` is in :obj:`self.model_input_names` and if
              :obj:`text` is not :obj:`None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when :obj:`images` is not :obj:`None`.
        """

        if text is None and images is None:
            raise ValueError("You have to specify either text or images. Both cannot be none.")

        if text is not None:
            encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)

        if images is not None:
            image_features = self.feature_extractor(images, return_tensors=return_tensors, **kwargs)

        if text is not None and images is not None:
            encoding["pixel_values"] = image_features.pixel_values
            return encoding
        elif text is not None:
            return encoding
        else:
            return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)

    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to CLIPTokenizer's
        :meth:`~transformers.PreTrainedTokenizer.batch_decode`. Please refer to the docstring of this method for more
        information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to CLIPTokenizer's :meth:`~transformers.PreTrainedTokenizer.decode`.
        Please refer to the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)