Spaces:
Sleeping
Sleeping
File size: 9,021 Bytes
2260825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image/Text processor class for CLIP
"""
from ...tokenization_utils_base import BatchEncoding
from .feature_extraction_clip import CLIPFeatureExtractor
from .tokenization_clip import CLIPTokenizer
class CLIPProcessor:
r"""
Constructs a CLIP processor which wraps a CLIP feature extractor and a CLIP tokenizer into a single processor.
:class:`~transformers.CLIPProcessor` offers all the functionalities of :class:`~transformers.CLIPFeatureExtractor`
and :class:`~transformers.CLIPTokenizer`. See the :meth:`~transformers.CLIPProcessor.__call__` and
:meth:`~transformers.CLIPProcessor.decode` for more information.
Args:
feature_extractor (:class:`~transformers.CLIPFeatureExtractor`):
The feature extractor is a required input.
tokenizer (:class:`~transformers.CLIPTokenizer`):
The tokenizer is a required input.
"""
def __init__(self, feature_extractor, tokenizer):
if not isinstance(feature_extractor, CLIPFeatureExtractor):
raise ValueError(
f"`feature_extractor` has to be of type CLIPFeatureExtractor, but is {type(feature_extractor)}"
)
if not isinstance(tokenizer, CLIPTokenizer):
raise ValueError(f"`tokenizer` has to be of type CLIPTokenizer, but is {type(tokenizer)}")
self.feature_extractor = feature_extractor
self.tokenizer = tokenizer
self.current_processor = self.feature_extractor
def save_pretrained(self, save_directory):
"""
Save a CLIP feature extractor object and CLIP tokenizer object to the directory ``save_directory``, so that it
can be re-loaded using the :func:`~transformers.CLIPProcessor.from_pretrained` class method.
.. note::
This class method is simply calling :meth:`~transformers.PreTrainedFeatureExtractor.save_pretrained` and
:meth:`~transformers.tokenization_utils_base.PreTrainedTokenizer.save_pretrained`. Please refer to the
docstrings of the methods above for more information.
Args:
save_directory (:obj:`str` or :obj:`os.PathLike`):
Directory where the feature extractor JSON file and the tokenizer files will be saved (directory will
be created if it does not exist).
"""
self.feature_extractor.save_pretrained(save_directory)
self.tokenizer.save_pretrained(save_directory)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
r"""
Instantiate a :class:`~transformers.CLIPProcessor` from a pretrained CLIP processor.
.. note::
This class method is simply calling CLIPFeatureExtractor's
:meth:`~transformers.PreTrainedFeatureExtractor.from_pretrained` and CLIPTokenizer's
:meth:`~transformers.tokenization_utils_base.PreTrainedTokenizer.from_pretrained`. Please refer to the
docstrings of the methods above for more information.
Args:
pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
This can be either:
- a string, the `model id` of a pretrained feature_extractor hosted inside a model repo on
huggingface.co. Valid model ids can be located at the root-level, like ``clip-vit-base-patch32``, or
namespaced under a user or organization name, like ``openai/clip-vit-base-patch32``.
- a path to a `directory` containing a feature extractor file saved using the
:meth:`~transformers.PreTrainedFeatureExtractor.save_pretrained` method, e.g.,
``./my_model_directory/``.
- a path or url to a saved feature extractor JSON `file`, e.g.,
``./my_model_directory/preprocessor_config.json``.
**kwargs
Additional keyword arguments passed along to both :class:`~transformers.PreTrainedFeatureExtractor` and
:class:`~transformers.PreTrainedTokenizer`
"""
feature_extractor = CLIPFeatureExtractor.from_pretrained(pretrained_model_name_or_path, **kwargs)
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
return cls(feature_extractor=feature_extractor, tokenizer=tokenizer)
def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the
:obj:`text` and :obj:`kwargs` arguments to CLIPTokenizer's :meth:`~transformers.CLIPTokenizer.__call__` if
:obj:`text` is not :obj:`None` to encode the text. To prepare the image(s), this method forwards the
:obj:`images` and :obj:`kwrags` arguments to CLIPFeatureExtractor's
:meth:`~transformers.CLIPFeatureExtractor.__call__` if :obj:`images` is not :obj:`None`. Please refer to the
doctsring of the above two methods for more information.
Args:
text (:obj:`str`, :obj:`List[str]`, :obj:`List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
:obj:`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (:obj:`PIL.Image.Image`, :obj:`np.ndarray`, :obj:`torch.Tensor`, :obj:`List[PIL.Image.Image]`, :obj:`List[np.ndarray]`, :obj:`List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
return_tensors (:obj:`str` or :class:`~transformers.file_utils.TensorType`, `optional`):
If set, will return tensors of a particular framework. Acceptable values are:
* :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects.
* :obj:`'pt'`: Return PyTorch :obj:`torch.Tensor` objects.
* :obj:`'np'`: Return NumPy :obj:`np.ndarray` objects.
* :obj:`'jax'`: Return JAX :obj:`jnp.ndarray` objects.
Returns:
:class:`~transformers.BatchEncoding`: A :class:`~transformers.BatchEncoding` with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when :obj:`text` is not :obj:`None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
:obj:`return_attention_mask=True` or if `"attention_mask"` is in :obj:`self.model_input_names` and if
:obj:`text` is not :obj:`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when :obj:`images` is not :obj:`None`.
"""
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none.")
if text is not None:
encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
if images is not None:
image_features = self.feature_extractor(images, return_tensors=return_tensors, **kwargs)
if text is not None and images is not None:
encoding["pixel_values"] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizer's
:meth:`~transformers.PreTrainedTokenizer.batch_decode`. Please refer to the docstring of this method for more
information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizer's :meth:`~transformers.PreTrainedTokenizer.decode`.
Please refer to the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
|