Spaces:
Sleeping
Sleeping
File size: 27,427 Bytes
2260825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Auto Tokenizer class. """
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
from ... import GPTNeoConfig
from ...configuration_utils import PretrainedConfig
from ...file_utils import (
cached_path,
hf_bucket_url,
is_offline_mode,
is_sentencepiece_available,
is_tokenizers_available,
)
from ...tokenization_utils_base import TOKENIZER_CONFIG_FILE
from ...utils import logging
from ..bart.tokenization_bart import BartTokenizer
from ..bert.tokenization_bert import BertTokenizer
from ..bert_japanese.tokenization_bert_japanese import BertJapaneseTokenizer
from ..bertweet.tokenization_bertweet import BertweetTokenizer
from ..blenderbot.tokenization_blenderbot import BlenderbotTokenizer
from ..blenderbot_small.tokenization_blenderbot_small import BlenderbotSmallTokenizer
from ..byt5.tokenization_byt5 import ByT5Tokenizer
from ..canine.tokenization_canine import CanineTokenizer
from ..convbert.tokenization_convbert import ConvBertTokenizer
from ..ctrl.tokenization_ctrl import CTRLTokenizer
from ..deberta.tokenization_deberta import DebertaTokenizer
from ..distilbert.tokenization_distilbert import DistilBertTokenizer
from ..dpr.tokenization_dpr import DPRQuestionEncoderTokenizer
from ..electra.tokenization_electra import ElectraTokenizer
from ..flaubert.tokenization_flaubert import FlaubertTokenizer
from ..fsmt.tokenization_fsmt import FSMTTokenizer
from ..funnel.tokenization_funnel import FunnelTokenizer
from ..gpt2.tokenization_gpt2 import GPT2Tokenizer
from ..herbert.tokenization_herbert import HerbertTokenizer
from ..layoutlm.tokenization_layoutlm import LayoutLMTokenizer
from ..led.tokenization_led import LEDTokenizer
from ..longformer.tokenization_longformer import LongformerTokenizer
from ..luke.tokenization_luke import LukeTokenizer
from ..lxmert.tokenization_lxmert import LxmertTokenizer
from ..mobilebert.tokenization_mobilebert import MobileBertTokenizer
from ..mpnet.tokenization_mpnet import MPNetTokenizer
from ..openai.tokenization_openai import OpenAIGPTTokenizer
from ..phobert.tokenization_phobert import PhobertTokenizer
from ..prophetnet.tokenization_prophetnet import ProphetNetTokenizer
from ..rag.tokenization_rag import RagTokenizer
from ..retribert.tokenization_retribert import RetriBertTokenizer
from ..roberta.tokenization_roberta import RobertaTokenizer
from ..roformer.tokenization_roformer import RoFormerTokenizer
from ..squeezebert.tokenization_squeezebert import SqueezeBertTokenizer
from ..tapas.tokenization_tapas import TapasTokenizer
from ..transfo_xl.tokenization_transfo_xl import TransfoXLTokenizer
from ..wav2vec2.tokenization_wav2vec2 import Wav2Vec2CTCTokenizer
from ..xlm.tokenization_xlm import XLMTokenizer
from .configuration_auto import (
AlbertConfig,
AutoConfig,
BartConfig,
BertConfig,
BertGenerationConfig,
BigBirdConfig,
BigBirdPegasusConfig,
BlenderbotConfig,
BlenderbotSmallConfig,
CamembertConfig,
CanineConfig,
ConvBertConfig,
CTRLConfig,
DebertaConfig,
DebertaV2Config,
DistilBertConfig,
DPRConfig,
ElectraConfig,
EncoderDecoderConfig,
FlaubertConfig,
FSMTConfig,
FunnelConfig,
GPT2Config,
HubertConfig,
IBertConfig,
LayoutLMConfig,
LEDConfig,
LongformerConfig,
LukeConfig,
LxmertConfig,
M2M100Config,
MarianConfig,
MBartConfig,
MobileBertConfig,
MPNetConfig,
MT5Config,
OpenAIGPTConfig,
PegasusConfig,
ProphetNetConfig,
RagConfig,
ReformerConfig,
RetriBertConfig,
RobertaConfig,
RoFormerConfig,
Speech2TextConfig,
SqueezeBertConfig,
T5Config,
TapasConfig,
TransfoXLConfig,
Wav2Vec2Config,
XLMConfig,
XLMProphetNetConfig,
XLMRobertaConfig,
XLNetConfig,
replace_list_option_in_docstrings,
)
if is_sentencepiece_available():
from ..albert.tokenization_albert import AlbertTokenizer
from ..barthez.tokenization_barthez import BarthezTokenizer
from ..bert_generation.tokenization_bert_generation import BertGenerationTokenizer
from ..big_bird.tokenization_big_bird import BigBirdTokenizer
from ..camembert.tokenization_camembert import CamembertTokenizer
from ..cpm.tokenization_cpm import CpmTokenizer
from ..deberta_v2.tokenization_deberta_v2 import DebertaV2Tokenizer
from ..m2m_100 import M2M100Tokenizer
from ..marian.tokenization_marian import MarianTokenizer
from ..mbart.tokenization_mbart import MBartTokenizer
from ..mbart.tokenization_mbart50 import MBart50Tokenizer
from ..mt5 import MT5Tokenizer
from ..pegasus.tokenization_pegasus import PegasusTokenizer
from ..reformer.tokenization_reformer import ReformerTokenizer
from ..speech_to_text import Speech2TextTokenizer
from ..t5.tokenization_t5 import T5Tokenizer
from ..xlm_prophetnet.tokenization_xlm_prophetnet import XLMProphetNetTokenizer
from ..xlm_roberta.tokenization_xlm_roberta import XLMRobertaTokenizer
from ..xlnet.tokenization_xlnet import XLNetTokenizer
else:
AlbertTokenizer = None
BarthezTokenizer = None
BertGenerationTokenizer = None
BigBirdTokenizer = None
CamembertTokenizer = None
CpmTokenizer = None
DebertaV2Tokenizer = None
MarianTokenizer = None
MBartTokenizer = None
MBart50Tokenizer = None
MT5Tokenizer = None
PegasusTokenizer = None
ReformerTokenizer = None
T5Tokenizer = None
XLMRobertaTokenizer = None
XLNetTokenizer = None
XLMProphetNetTokenizer = None
M2M100Tokenizer = None
Speech2TextTokenizer = None
if is_tokenizers_available():
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ..albert.tokenization_albert_fast import AlbertTokenizerFast
from ..bart.tokenization_bart_fast import BartTokenizerFast
from ..barthez.tokenization_barthez_fast import BarthezTokenizerFast
from ..bert.tokenization_bert_fast import BertTokenizerFast
from ..big_bird.tokenization_big_bird_fast import BigBirdTokenizerFast
from ..camembert.tokenization_camembert_fast import CamembertTokenizerFast
from ..convbert.tokenization_convbert_fast import ConvBertTokenizerFast
from ..deberta.tokenization_deberta_fast import DebertaTokenizerFast
from ..distilbert.tokenization_distilbert_fast import DistilBertTokenizerFast
from ..dpr.tokenization_dpr_fast import DPRQuestionEncoderTokenizerFast
from ..electra.tokenization_electra_fast import ElectraTokenizerFast
from ..funnel.tokenization_funnel_fast import FunnelTokenizerFast
from ..gpt2.tokenization_gpt2_fast import GPT2TokenizerFast
from ..herbert.tokenization_herbert_fast import HerbertTokenizerFast
from ..layoutlm.tokenization_layoutlm_fast import LayoutLMTokenizerFast
from ..led.tokenization_led_fast import LEDTokenizerFast
from ..longformer.tokenization_longformer_fast import LongformerTokenizerFast
from ..lxmert.tokenization_lxmert_fast import LxmertTokenizerFast
from ..mbart.tokenization_mbart50_fast import MBart50TokenizerFast
from ..mbart.tokenization_mbart_fast import MBartTokenizerFast
from ..mobilebert.tokenization_mobilebert_fast import MobileBertTokenizerFast
from ..mpnet.tokenization_mpnet_fast import MPNetTokenizerFast
from ..mt5 import MT5TokenizerFast
from ..openai.tokenization_openai_fast import OpenAIGPTTokenizerFast
from ..pegasus.tokenization_pegasus_fast import PegasusTokenizerFast
from ..reformer.tokenization_reformer_fast import ReformerTokenizerFast
from ..retribert.tokenization_retribert_fast import RetriBertTokenizerFast
from ..roberta.tokenization_roberta_fast import RobertaTokenizerFast
from ..roformer.tokenization_roformer_fast import RoFormerTokenizerFast
from ..squeezebert.tokenization_squeezebert_fast import SqueezeBertTokenizerFast
from ..t5.tokenization_t5_fast import T5TokenizerFast
from ..xlm_roberta.tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast
from ..xlnet.tokenization_xlnet_fast import XLNetTokenizerFast
else:
AlbertTokenizerFast = None
BartTokenizerFast = None
BarthezTokenizerFast = None
BertTokenizerFast = None
BigBirdTokenizerFast = None
CamembertTokenizerFast = None
ConvBertTokenizerFast = None
DebertaTokenizerFast = None
DistilBertTokenizerFast = None
DPRQuestionEncoderTokenizerFast = None
ElectraTokenizerFast = None
FunnelTokenizerFast = None
GPT2TokenizerFast = None
HerbertTokenizerFast = None
LayoutLMTokenizerFast = None
LEDTokenizerFast = None
LongformerTokenizerFast = None
LxmertTokenizerFast = None
MBartTokenizerFast = None
MBart50TokenizerFast = None
MobileBertTokenizerFast = None
MPNetTokenizerFast = None
MT5TokenizerFast = None
OpenAIGPTTokenizerFast = None
PegasusTokenizerFast = None
ReformerTokenizerFast = None
RetriBertTokenizerFast = None
RobertaTokenizerFast = None
RoFormerTokenizerFast = None
SqueezeBertTokenizerFast = None
T5TokenizerFast = None
XLMRobertaTokenizerFast = None
XLNetTokenizerFast = None
PreTrainedTokenizerFast = None
logger = logging.get_logger(__name__)
TOKENIZER_MAPPING = OrderedDict(
[
(RetriBertConfig, (RetriBertTokenizer, RetriBertTokenizerFast)),
(RoFormerConfig, (RoFormerTokenizer, RoFormerTokenizerFast)),
(T5Config, (T5Tokenizer, T5TokenizerFast)),
(MT5Config, (MT5Tokenizer, MT5TokenizerFast)),
(MobileBertConfig, (MobileBertTokenizer, MobileBertTokenizerFast)),
(DistilBertConfig, (DistilBertTokenizer, DistilBertTokenizerFast)),
(AlbertConfig, (AlbertTokenizer, AlbertTokenizerFast)),
(CamembertConfig, (CamembertTokenizer, CamembertTokenizerFast)),
(PegasusConfig, (PegasusTokenizer, PegasusTokenizerFast)),
(MBartConfig, (MBartTokenizer, MBartTokenizerFast)),
(XLMRobertaConfig, (XLMRobertaTokenizer, XLMRobertaTokenizerFast)),
(MarianConfig, (MarianTokenizer, None)),
(BlenderbotSmallConfig, (BlenderbotSmallTokenizer, None)),
(BlenderbotConfig, (BlenderbotTokenizer, None)),
(BartConfig, (BartTokenizer, BartTokenizerFast)),
(LongformerConfig, (LongformerTokenizer, LongformerTokenizerFast)),
(RobertaConfig, (RobertaTokenizer, RobertaTokenizerFast)),
(ReformerConfig, (ReformerTokenizer, ReformerTokenizerFast)),
(ElectraConfig, (ElectraTokenizer, ElectraTokenizerFast)),
(FunnelConfig, (FunnelTokenizer, FunnelTokenizerFast)),
(LxmertConfig, (LxmertTokenizer, LxmertTokenizerFast)),
(LayoutLMConfig, (LayoutLMTokenizer, LayoutLMTokenizerFast)),
(DPRConfig, (DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast)),
(SqueezeBertConfig, (SqueezeBertTokenizer, SqueezeBertTokenizerFast)),
(BertConfig, (BertTokenizer, BertTokenizerFast)),
(OpenAIGPTConfig, (OpenAIGPTTokenizer, OpenAIGPTTokenizerFast)),
(GPT2Config, (GPT2Tokenizer, GPT2TokenizerFast)),
(TransfoXLConfig, (TransfoXLTokenizer, None)),
(XLNetConfig, (XLNetTokenizer, XLNetTokenizerFast)),
(FlaubertConfig, (FlaubertTokenizer, None)),
(XLMConfig, (XLMTokenizer, None)),
(CTRLConfig, (CTRLTokenizer, None)),
(FSMTConfig, (FSMTTokenizer, None)),
(BertGenerationConfig, (BertGenerationTokenizer, None)),
(DebertaConfig, (DebertaTokenizer, DebertaTokenizerFast)),
(DebertaV2Config, (DebertaV2Tokenizer, None)),
(RagConfig, (RagTokenizer, None)),
(XLMProphetNetConfig, (XLMProphetNetTokenizer, None)),
(Speech2TextConfig, (Speech2TextTokenizer, None)),
(M2M100Config, (M2M100Tokenizer, None)),
(ProphetNetConfig, (ProphetNetTokenizer, None)),
(MPNetConfig, (MPNetTokenizer, MPNetTokenizerFast)),
(TapasConfig, (TapasTokenizer, None)),
(LEDConfig, (LEDTokenizer, LEDTokenizerFast)),
(ConvBertConfig, (ConvBertTokenizer, ConvBertTokenizerFast)),
(BigBirdConfig, (BigBirdTokenizer, BigBirdTokenizerFast)),
(IBertConfig, (RobertaTokenizer, RobertaTokenizerFast)),
(Wav2Vec2Config, (Wav2Vec2CTCTokenizer, None)),
(HubertConfig, (Wav2Vec2CTCTokenizer, None)),
(GPTNeoConfig, (GPT2Tokenizer, GPT2TokenizerFast)),
(LukeConfig, (LukeTokenizer, None)),
(BigBirdPegasusConfig, (PegasusTokenizer, PegasusTokenizerFast)),
(CanineConfig, (CanineTokenizer, None)),
]
)
# For tokenizers which are not directly mapped from a config
NO_CONFIG_TOKENIZER = [
BertJapaneseTokenizer,
BertweetTokenizer,
ByT5Tokenizer,
CpmTokenizer,
HerbertTokenizer,
HerbertTokenizerFast,
PhobertTokenizer,
BarthezTokenizer,
BarthezTokenizerFast,
MBart50Tokenizer,
MBart50TokenizerFast,
PreTrainedTokenizerFast,
]
SLOW_TOKENIZER_MAPPING = {
k: (v[0] if v[0] is not None else v[1])
for k, v in TOKENIZER_MAPPING.items()
if (v[0] is not None or v[1] is not None)
}
def tokenizer_class_from_name(class_name: str):
all_tokenizer_classes = (
[v[0] for v in TOKENIZER_MAPPING.values() if v[0] is not None]
+ [v[1] for v in TOKENIZER_MAPPING.values() if v[1] is not None]
+ [v for v in NO_CONFIG_TOKENIZER if v is not None]
)
for c in all_tokenizer_classes:
if c.__name__ == class_name:
return c
def get_tokenizer_config(
pretrained_model_name_or_path: Union[str, os.PathLike],
cache_dir: Optional[Union[str, os.PathLike]] = None,
force_download: bool = False,
resume_download: bool = False,
proxies: Optional[Dict[str, str]] = None,
use_auth_token: Optional[Union[bool, str]] = None,
revision: Optional[str] = None,
local_files_only: bool = False,
**kwargs,
):
"""
Loads the tokenizer configuration from a pretrained model tokenizer configuration.
Args:
pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
This can be either:
- a string, the `model id` of a pretrained model configuration hosted inside a model repo on
huggingface.co. Valid model ids can be located at the root-level, like ``bert-base-uncased``, or
namespaced under a user or organization name, like ``dbmdz/bert-base-german-cased``.
- a path to a `directory` containing a configuration file saved using the
:func:`~transformers.PreTrainedTokenizer.save_pretrained` method, e.g., ``./my_model_directory/``.
cache_dir (:obj:`str` or :obj:`os.PathLike`, `optional`):
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
cache should not be used.
force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to force to (re-)download the configuration files and override the cached versions if they
exist.
resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
proxies (:obj:`Dict[str, str]`, `optional`):
A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
use_auth_token (:obj:`str` or `bool`, `optional`):
The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token
generated when running :obj:`transformers-cli login` (stored in :obj:`~/.huggingface`).
revision(:obj:`str`, `optional`, defaults to :obj:`"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
identifier allowed by git.
local_files_only (:obj:`bool`, `optional`, defaults to :obj:`False`):
If :obj:`True`, will only try to load the tokenizer configuration from local files.
.. note::
Passing :obj:`use_auth_token=True` is required when you want to use a private model.
Returns:
:obj:`Dict`: The configuration of the tokenizer.
Examples::
# Download configuration from huggingface.co and cache.
tokenizer_config = get_tokenizer_config("bert-base-uncased")
# This model does not have a tokenizer config so the result will be an empty dict.
tokenizer_config = get_tokenizer_config("xlm-roberta-base")
# Save a pretrained tokenizer locally and you can reload its config
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
tokenizer.save_pretrained("tokenizer-test")
tokenizer_config = get_tokenizer_config("tokenizer-test")
"""
if is_offline_mode() and not local_files_only:
logger.info("Offline mode: forcing local_files_only=True")
local_files_only = True
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
if os.path.isdir(pretrained_model_name_or_path):
config_file = os.path.join(pretrained_model_name_or_path, TOKENIZER_CONFIG_FILE)
else:
config_file = hf_bucket_url(
pretrained_model_name_or_path, filename=TOKENIZER_CONFIG_FILE, revision=revision, mirror=None
)
try:
# Load from URL or cache if already cached
resolved_config_file = cached_path(
config_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
)
except EnvironmentError:
logger.info("Could not locate the tokenizer configuration file, will try to use the model config instead.")
return {}
with open(resolved_config_file, encoding="utf-8") as reader:
return json.load(reader)
class AutoTokenizer:
r"""
This is a generic tokenizer class that will be instantiated as one of the tokenizer classes of the library when
created with the :meth:`AutoTokenizer.from_pretrained` class method.
This class cannot be instantiated directly using ``__init__()`` (throws an error).
"""
def __init__(self):
raise EnvironmentError(
"AutoTokenizer is designed to be instantiated "
"using the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)` method."
)
@classmethod
@replace_list_option_in_docstrings(SLOW_TOKENIZER_MAPPING)
def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
r"""
Instantiate one of the tokenizer classes of the library from a pretrained model vocabulary.
The tokenizer class to instantiate is selected based on the :obj:`model_type` property of the config object
(either passed as an argument or loaded from :obj:`pretrained_model_name_or_path` if possible), or when it's
missing, by falling back to using pattern matching on :obj:`pretrained_model_name_or_path`:
List options
Params:
pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
Can be either:
- A string, the `model id` of a predefined tokenizer hosted inside a model repo on huggingface.co.
Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
a user or organization name, like ``dbmdz/bert-base-german-cased``.
- A path to a `directory` containing vocabulary files required by the tokenizer, for instance saved
using the :func:`~transformers.PreTrainedTokenizer.save_pretrained` method, e.g.,
``./my_model_directory/``.
- A path or url to a single saved vocabulary file if and only if the tokenizer only requires a
single vocabulary file (like Bert or XLNet), e.g.: ``./my_model_directory/vocab.txt``. (Not
applicable to all derived classes)
inputs (additional positional arguments, `optional`):
Will be passed along to the Tokenizer ``__init__()`` method.
config (:class:`~transformers.PreTrainedConfig`, `optional`)
The configuration object used to dertermine the tokenizer class to instantiate.
cache_dir (:obj:`str` or :obj:`os.PathLike`, `optional`):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to force the (re-)download the model weights and configuration files and override the
cached versions if they exist.
resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
file exists.
proxies (:obj:`Dict[str, str]`, `optional`):
A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
revision(:obj:`str`, `optional`, defaults to :obj:`"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
identifier allowed by git.
subfolder (:obj:`str`, `optional`):
In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for
facebook/rag-token-base), specify it here.
use_fast (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to try to load the fast version of the tokenizer.
kwargs (additional keyword arguments, `optional`):
Will be passed to the Tokenizer ``__init__()`` method. Can be used to set special tokens like
``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``,
``mask_token``, ``additional_special_tokens``. See parameters in the ``__init__()`` for more details.
Examples::
>>> from transformers import AutoTokenizer
>>> # Download vocabulary from huggingface.co and cache.
>>> tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
>>> # Download vocabulary from huggingface.co (user-uploaded) and cache.
>>> tokenizer = AutoTokenizer.from_pretrained('dbmdz/bert-base-german-cased')
>>> # If vocabulary files are in a directory (e.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`)
>>> tokenizer = AutoTokenizer.from_pretrained('./test/bert_saved_model/')
"""
config = kwargs.pop("config", None)
kwargs["_from_auto"] = True
use_fast = kwargs.pop("use_fast", True)
# First, let's try to use the tokenizer_config file to get the tokenizer class.
tokenizer_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs)
config_tokenizer_class = tokenizer_config.get("tokenizer_class")
# If that did not work, let's try to use the config.
if config_tokenizer_class is None:
if not isinstance(config, PretrainedConfig):
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
config_tokenizer_class = config.tokenizer_class
# If we have the tokenizer class from the tokenizer config or the model config we're good!
if config_tokenizer_class is not None:
tokenizer_class = None
if use_fast and not config_tokenizer_class.endswith("Fast"):
tokenizer_class_candidate = f"{config_tokenizer_class}Fast"
tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate)
if tokenizer_class is None:
tokenizer_class_candidate = config_tokenizer_class
tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate)
if tokenizer_class is None:
raise ValueError(
f"Tokenizer class {tokenizer_class_candidate} does not exist or is not currently imported."
)
return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
# Otherwise we have to be creative.
# if model is an encoder decoder, the encoder tokenizer class is used by default
if isinstance(config, EncoderDecoderConfig):
if type(config.decoder) is not type(config.encoder): # noqa: E721
logger.warning(
f"The encoder model config class: {config.encoder.__class__} is different from the decoder model "
f"config class: {config.decoder.__class}. It is not recommended to use the "
"`AutoTokenizer.from_pretrained()` method in this case. Please use the encoder and decoder "
"specific tokenizer classes."
)
config = config.encoder
if type(config) in TOKENIZER_MAPPING.keys():
tokenizer_class_py, tokenizer_class_fast = TOKENIZER_MAPPING[type(config)]
if tokenizer_class_fast and (use_fast or tokenizer_class_py is None):
return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
else:
if tokenizer_class_py is not None:
return tokenizer_class_py.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
else:
raise ValueError(
"This tokenizer cannot be instantiated. Please make sure you have `sentencepiece` installed "
"in order to use this tokenizer."
)
raise ValueError(
f"Unrecognized configuration class {config.__class__} to build an AutoTokenizer.\n"
f"Model type should be one of {', '.join(c.__name__ for c in TOKENIZER_MAPPING.keys())}."
)
|