Spaces:
Sleeping
Sleeping
File size: 22,776 Bytes
2260825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Auto Config class. """
import re
from collections import OrderedDict
from ...configuration_utils import PretrainedConfig
from ..albert.configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig
from ..bart.configuration_bart import BART_PRETRAINED_CONFIG_ARCHIVE_MAP, BartConfig
from ..bert.configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig
from ..bert_generation.configuration_bert_generation import BertGenerationConfig
from ..big_bird.configuration_big_bird import BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdConfig
from ..bigbird_pegasus.configuration_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP,
BigBirdPegasusConfig,
)
from ..blenderbot.configuration_blenderbot import BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig
from ..blenderbot_small.configuration_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotSmallConfig,
)
from ..camembert.configuration_camembert import CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CamembertConfig
from ..canine.configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig
from ..clip.configuration_clip import CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig
from ..convbert.configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig
from ..ctrl.configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig
from ..deberta.configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig
from ..deberta_v2.configuration_deberta_v2 import DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaV2Config
from ..deit.configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig
from ..detr.configuration_detr import DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, DetrConfig
from ..distilbert.configuration_distilbert import DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig
from ..dpr.configuration_dpr import DPR_PRETRAINED_CONFIG_ARCHIVE_MAP, DPRConfig
from ..electra.configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig
from ..encoder_decoder.configuration_encoder_decoder import EncoderDecoderConfig
from ..flaubert.configuration_flaubert import FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, FlaubertConfig
from ..fsmt.configuration_fsmt import FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP, FSMTConfig
from ..funnel.configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig
from ..gpt2.configuration_gpt2 import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2Config
from ..gpt_neo.configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig
from ..hubert.configuration_hubert import HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, HubertConfig
from ..ibert.configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig
from ..layoutlm.configuration_layoutlm import LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMConfig
from ..led.configuration_led import LED_PRETRAINED_CONFIG_ARCHIVE_MAP, LEDConfig
from ..longformer.configuration_longformer import LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig
from ..luke.configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig
from ..lxmert.configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig
from ..m2m_100.configuration_m2m_100 import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, M2M100Config
from ..marian.configuration_marian import MarianConfig
from ..mbart.configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig
from ..megatron_bert.configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
from ..mobilebert.configuration_mobilebert import MobileBertConfig
from ..mpnet.configuration_mpnet import MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP, MPNetConfig
from ..mt5.configuration_mt5 import MT5Config
from ..openai.configuration_openai import OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OpenAIGPTConfig
from ..pegasus.configuration_pegasus import PegasusConfig
from ..prophetnet.configuration_prophetnet import PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ProphetNetConfig
from ..rag.configuration_rag import RagConfig
from ..reformer.configuration_reformer import ReformerConfig
from ..retribert.configuration_retribert import RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RetriBertConfig
from ..roberta.configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig
from ..roformer.configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig
from ..speech_to_text.configuration_speech_to_text import (
SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP,
Speech2TextConfig,
)
from ..squeezebert.configuration_squeezebert import SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig
from ..t5.configuration_t5 import T5_PRETRAINED_CONFIG_ARCHIVE_MAP, T5Config
from ..tapas.configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig
from ..transfo_xl.configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig
from ..visual_bert.configuration_visual_bert import VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, VisualBertConfig
from ..vit.configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig
from ..wav2vec2.configuration_wav2vec2 import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, Wav2Vec2Config
from ..xlm.configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig
from ..xlm_prophetnet.configuration_xlm_prophetnet import (
XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLMProphetNetConfig,
)
from ..xlm_roberta.configuration_xlm_roberta import XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig
from ..xlnet.configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
ALL_PRETRAINED_CONFIG_ARCHIVE_MAP = dict(
(key, value)
for pretrained_map in [
# Add archive maps here
VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP,
ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP,
DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP,
DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP,
BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP,
MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP,
VIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP,
CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
LED_PRETRAINED_CONFIG_ARCHIVE_MAP,
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BART_PRETRAINED_CONFIG_ARCHIVE_MAP,
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
MBART_PRETRAINED_CONFIG_ARCHIVE_MAP,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
DPR_PRETRAINED_CONFIG_ARCHIVE_MAP,
DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP,
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP,
IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
]
for key, value, in pretrained_map.items()
)
CONFIG_MAPPING = OrderedDict(
[
# Add configs here
("visual_bert", VisualBertConfig),
("canine", CanineConfig),
("roformer", RoFormerConfig),
("clip", CLIPConfig),
("bigbird_pegasus", BigBirdPegasusConfig),
("deit", DeiTConfig),
("luke", LukeConfig),
("detr", DetrConfig),
("gpt_neo", GPTNeoConfig),
("big_bird", BigBirdConfig),
("speech_to_text", Speech2TextConfig),
("vit", ViTConfig),
("wav2vec2", Wav2Vec2Config),
("m2m_100", M2M100Config),
("convbert", ConvBertConfig),
("led", LEDConfig),
("blenderbot-small", BlenderbotSmallConfig),
("retribert", RetriBertConfig),
("ibert", IBertConfig),
("mt5", MT5Config),
("t5", T5Config),
("mobilebert", MobileBertConfig),
("distilbert", DistilBertConfig),
("albert", AlbertConfig),
("bert-generation", BertGenerationConfig),
("camembert", CamembertConfig),
("xlm-roberta", XLMRobertaConfig),
("pegasus", PegasusConfig),
("marian", MarianConfig),
("mbart", MBartConfig),
("megatron-bert", MegatronBertConfig),
("mpnet", MPNetConfig),
("bart", BartConfig),
("blenderbot", BlenderbotConfig),
("reformer", ReformerConfig),
("longformer", LongformerConfig),
("roberta", RobertaConfig),
("deberta-v2", DebertaV2Config),
("deberta", DebertaConfig),
("flaubert", FlaubertConfig),
("fsmt", FSMTConfig),
("squeezebert", SqueezeBertConfig),
("hubert", HubertConfig),
("bert", BertConfig),
("openai-gpt", OpenAIGPTConfig),
("gpt2", GPT2Config),
("transfo-xl", TransfoXLConfig),
("xlnet", XLNetConfig),
("xlm-prophetnet", XLMProphetNetConfig),
("prophetnet", ProphetNetConfig),
("xlm", XLMConfig),
("ctrl", CTRLConfig),
("electra", ElectraConfig),
("encoder-decoder", EncoderDecoderConfig),
("funnel", FunnelConfig),
("lxmert", LxmertConfig),
("dpr", DPRConfig),
("layoutlm", LayoutLMConfig),
("rag", RagConfig),
("tapas", TapasConfig),
]
)
MODEL_NAMES_MAPPING = OrderedDict(
[
# Add full (and cased) model names here
("visual_bert", "VisualBert"),
("canine", "Canine"),
("roformer", "RoFormer"),
("clip", "CLIP"),
("bigbird_pegasus", "BigBirdPegasus"),
("deit", "DeiT"),
("luke", "LUKE"),
("detr", "DETR"),
("gpt_neo", "GPT Neo"),
("big_bird", "BigBird"),
("speech_to_text", "Speech2Text"),
("vit", "ViT"),
("wav2vec2", "Wav2Vec2"),
("m2m_100", "M2M100"),
("convbert", "ConvBERT"),
("led", "LED"),
("blenderbot-small", "BlenderbotSmall"),
("retribert", "RetriBERT"),
("ibert", "I-BERT"),
("t5", "T5"),
("mobilebert", "MobileBERT"),
("distilbert", "DistilBERT"),
("albert", "ALBERT"),
("bert-generation", "Bert Generation"),
("camembert", "CamemBERT"),
("xlm-roberta", "XLM-RoBERTa"),
("pegasus", "Pegasus"),
("blenderbot", "Blenderbot"),
("marian", "Marian"),
("mbart", "mBART"),
("megatron-bert", "MegatronBert"),
("bart", "BART"),
("reformer", "Reformer"),
("longformer", "Longformer"),
("roberta", "RoBERTa"),
("flaubert", "FlauBERT"),
("fsmt", "FairSeq Machine-Translation"),
("squeezebert", "SqueezeBERT"),
("bert", "BERT"),
("openai-gpt", "OpenAI GPT"),
("gpt2", "OpenAI GPT-2"),
("transfo-xl", "Transformer-XL"),
("xlnet", "XLNet"),
("xlm", "XLM"),
("ctrl", "CTRL"),
("electra", "ELECTRA"),
("encoder-decoder", "Encoder decoder"),
("funnel", "Funnel Transformer"),
("lxmert", "LXMERT"),
("deberta-v2", "DeBERTa-v2"),
("deberta", "DeBERTa"),
("layoutlm", "LayoutLM"),
("dpr", "DPR"),
("rag", "RAG"),
("xlm-prophetnet", "XLMProphetNet"),
("prophetnet", "ProphetNet"),
("mt5", "mT5"),
("mpnet", "MPNet"),
("tapas", "TAPAS"),
("hubert", "Hubert"),
]
)
def _get_class_name(model_class):
if isinstance(model_class, (list, tuple)):
return " or ".join([f":class:`~transformers.{c.__name__}`" for c in model_class])
return f":class:`~transformers.{model_class.__name__}`"
def _list_model_options(indent, config_to_class=None, use_model_types=True):
if config_to_class is None and not use_model_types:
raise ValueError("Using `use_model_types=False` requires a `config_to_class` dictionary.")
if use_model_types:
if config_to_class is None:
model_type_to_name = {
model_type: f":class:`~transformers.{config.__name__}`"
for model_type, config in CONFIG_MAPPING.items()
}
else:
model_type_to_name = {
model_type: _get_class_name(config_to_class[config])
for model_type, config in CONFIG_MAPPING.items()
if config in config_to_class
}
lines = [
f"{indent}- **{model_type}** -- {model_type_to_name[model_type]} ({MODEL_NAMES_MAPPING[model_type]} model)"
for model_type in sorted(model_type_to_name.keys())
]
else:
config_to_name = {config.__name__: _get_class_name(clas) for config, clas in config_to_class.items()}
config_to_model_name = {
config.__name__: MODEL_NAMES_MAPPING[model_type] for model_type, config in CONFIG_MAPPING.items()
}
lines = [
f"{indent}- :class:`~transformers.{config_name}` configuration class: {config_to_name[config_name]} ({config_to_model_name[config_name]} model)"
for config_name in sorted(config_to_name.keys())
]
return "\n".join(lines)
def replace_list_option_in_docstrings(config_to_class=None, use_model_types=True):
def docstring_decorator(fn):
docstrings = fn.__doc__
lines = docstrings.split("\n")
i = 0
while i < len(lines) and re.search(r"^(\s*)List options\s*$", lines[i]) is None:
i += 1
if i < len(lines):
indent = re.search(r"^(\s*)List options\s*$", lines[i]).groups()[0]
if use_model_types:
indent = f"{indent} "
lines[i] = _list_model_options(indent, config_to_class=config_to_class, use_model_types=use_model_types)
docstrings = "\n".join(lines)
else:
raise ValueError(
f"The function {fn} should have an empty 'List options' in its docstring as placeholder, current docstring is:\n{docstrings}"
)
fn.__doc__ = docstrings
return fn
return docstring_decorator
class AutoConfig:
r"""
This is a generic configuration class that will be instantiated as one of the configuration classes of the library
when created with the :meth:`~transformers.AutoConfig.from_pretrained` class method.
This class cannot be instantiated directly using ``__init__()`` (throws an error).
"""
def __init__(self):
raise EnvironmentError(
"AutoConfig is designed to be instantiated "
"using the `AutoConfig.from_pretrained(pretrained_model_name_or_path)` method."
)
@classmethod
def for_model(cls, model_type: str, *args, **kwargs):
if model_type in CONFIG_MAPPING:
config_class = CONFIG_MAPPING[model_type]
return config_class(*args, **kwargs)
raise ValueError(
f"Unrecognized model identifier: {model_type}. Should contain one of {', '.join(CONFIG_MAPPING.keys())}"
)
@classmethod
@replace_list_option_in_docstrings()
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
r"""
Instantiate one of the configuration classes of the library from a pretrained model configuration.
The configuration class to instantiate is selected based on the :obj:`model_type` property of the config object
that is loaded, or when it's missing, by falling back to using pattern matching on
:obj:`pretrained_model_name_or_path`:
List options
Args:
pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
Can be either:
- A string, the `model id` of a pretrained model configuration hosted inside a model repo on
huggingface.co. Valid model ids can be located at the root-level, like ``bert-base-uncased``, or
namespaced under a user or organization name, like ``dbmdz/bert-base-german-cased``.
- A path to a `directory` containing a configuration file saved using the
:meth:`~transformers.PretrainedConfig.save_pretrained` method, or the
:meth:`~transformers.PreTrainedModel.save_pretrained` method, e.g., ``./my_model_directory/``.
- A path or url to a saved configuration JSON `file`, e.g.,
``./my_model_directory/configuration.json``.
cache_dir (:obj:`str` or :obj:`os.PathLike`, `optional`):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to force the (re-)download the model weights and configuration files and override the
cached versions if they exist.
resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
file exists.
proxies (:obj:`Dict[str, str]`, `optional`):
A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
revision(:obj:`str`, `optional`, defaults to :obj:`"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
identifier allowed by git.
return_unused_kwargs (:obj:`bool`, `optional`, defaults to :obj:`False`):
If :obj:`False`, then this function returns just the final configuration object.
If :obj:`True`, then this functions returns a :obj:`Tuple(config, unused_kwargs)` where `unused_kwargs`
is a dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e.,
the part of ``kwargs`` which has not been used to update ``config`` and is otherwise ignored.
kwargs(additional keyword arguments, `optional`):
The values in kwargs of any keys which are configuration attributes will be used to override the loaded
values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
by the ``return_unused_kwargs`` keyword parameter.
Examples::
>>> from transformers import AutoConfig
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained('bert-base-uncased')
>>> # Download configuration from huggingface.co (user-uploaded) and cache.
>>> config = AutoConfig.from_pretrained('dbmdz/bert-base-german-cased')
>>> # If configuration file is in a directory (e.g., was saved using `save_pretrained('./test/saved_model/')`).
>>> config = AutoConfig.from_pretrained('./test/bert_saved_model/')
>>> # Load a specific configuration file.
>>> config = AutoConfig.from_pretrained('./test/bert_saved_model/my_configuration.json')
>>> # Change some config attributes when loading a pretrained config.
>>> config = AutoConfig.from_pretrained('bert-base-uncased', output_attentions=True, foo=False)
>>> config.output_attentions
True
>>> config, unused_kwargs = AutoConfig.from_pretrained('bert-base-uncased', output_attentions=True, foo=False, return_unused_kwargs=True)
>>> config.output_attentions
True
>>> config.unused_kwargs
{'foo': False}
"""
kwargs["_from_auto"] = True
config_dict, _ = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs)
if "model_type" in config_dict:
config_class = CONFIG_MAPPING[config_dict["model_type"]]
return config_class.from_dict(config_dict, **kwargs)
else:
# Fallback: use pattern matching on the string.
for pattern, config_class in CONFIG_MAPPING.items():
if pattern in str(pretrained_model_name_or_path):
return config_class.from_dict(config_dict, **kwargs)
raise ValueError(
f"Unrecognized model in {pretrained_model_name_or_path}. "
"Should have a `model_type` key in its config.json, or contain one of the following strings "
f"in its name: {', '.join(CONFIG_MAPPING.keys())}"
)
|