File size: 22,776 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Auto Config class. """

import re
from collections import OrderedDict

from ...configuration_utils import PretrainedConfig
from ..albert.configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig
from ..bart.configuration_bart import BART_PRETRAINED_CONFIG_ARCHIVE_MAP, BartConfig
from ..bert.configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig
from ..bert_generation.configuration_bert_generation import BertGenerationConfig
from ..big_bird.configuration_big_bird import BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdConfig
from ..bigbird_pegasus.configuration_bigbird_pegasus import (
    BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP,
    BigBirdPegasusConfig,
)
from ..blenderbot.configuration_blenderbot import BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig
from ..blenderbot_small.configuration_blenderbot_small import (
    BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
    BlenderbotSmallConfig,
)
from ..camembert.configuration_camembert import CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CamembertConfig
from ..canine.configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig
from ..clip.configuration_clip import CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig
from ..convbert.configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig
from ..ctrl.configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig
from ..deberta.configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig
from ..deberta_v2.configuration_deberta_v2 import DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaV2Config
from ..deit.configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig
from ..detr.configuration_detr import DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, DetrConfig
from ..distilbert.configuration_distilbert import DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig
from ..dpr.configuration_dpr import DPR_PRETRAINED_CONFIG_ARCHIVE_MAP, DPRConfig
from ..electra.configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig
from ..encoder_decoder.configuration_encoder_decoder import EncoderDecoderConfig
from ..flaubert.configuration_flaubert import FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, FlaubertConfig
from ..fsmt.configuration_fsmt import FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP, FSMTConfig
from ..funnel.configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig
from ..gpt2.configuration_gpt2 import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2Config
from ..gpt_neo.configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig
from ..hubert.configuration_hubert import HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, HubertConfig
from ..ibert.configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig
from ..layoutlm.configuration_layoutlm import LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMConfig
from ..led.configuration_led import LED_PRETRAINED_CONFIG_ARCHIVE_MAP, LEDConfig
from ..longformer.configuration_longformer import LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig
from ..luke.configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig
from ..lxmert.configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig
from ..m2m_100.configuration_m2m_100 import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, M2M100Config
from ..marian.configuration_marian import MarianConfig
from ..mbart.configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig
from ..megatron_bert.configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
from ..mobilebert.configuration_mobilebert import MobileBertConfig
from ..mpnet.configuration_mpnet import MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP, MPNetConfig
from ..mt5.configuration_mt5 import MT5Config
from ..openai.configuration_openai import OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OpenAIGPTConfig
from ..pegasus.configuration_pegasus import PegasusConfig
from ..prophetnet.configuration_prophetnet import PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ProphetNetConfig
from ..rag.configuration_rag import RagConfig
from ..reformer.configuration_reformer import ReformerConfig
from ..retribert.configuration_retribert import RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RetriBertConfig
from ..roberta.configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig
from ..roformer.configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig
from ..speech_to_text.configuration_speech_to_text import (
    SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP,
    Speech2TextConfig,
)
from ..squeezebert.configuration_squeezebert import SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig
from ..t5.configuration_t5 import T5_PRETRAINED_CONFIG_ARCHIVE_MAP, T5Config
from ..tapas.configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig
from ..transfo_xl.configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig
from ..visual_bert.configuration_visual_bert import VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, VisualBertConfig
from ..vit.configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig
from ..wav2vec2.configuration_wav2vec2 import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, Wav2Vec2Config
from ..xlm.configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig
from ..xlm_prophetnet.configuration_xlm_prophetnet import (
    XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
    XLMProphetNetConfig,
)
from ..xlm_roberta.configuration_xlm_roberta import XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig
from ..xlnet.configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig


ALL_PRETRAINED_CONFIG_ARCHIVE_MAP = dict(
    (key, value)
    for pretrained_map in [
        # Add archive maps here
        VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP,
        ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
        BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP,
        DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP,
        DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
        GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP,
        BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP,
        MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        VIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
        M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP,
        CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        LED_PRETRAINED_CONFIG_ARCHIVE_MAP,
        BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
        BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        BART_PRETRAINED_CONFIG_ARCHIVE_MAP,
        BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        MBART_PRETRAINED_CONFIG_ARCHIVE_MAP,
        OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
        GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
        CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
        XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
        XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
        ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
        DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
        XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
        FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
        LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
        RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP,
        LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
        DPR_PRETRAINED_CONFIG_ARCHIVE_MAP,
        DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
        DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP,
        SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
        PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
        MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
        TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP,
        IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
        HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
    ]
    for key, value, in pretrained_map.items()
)


CONFIG_MAPPING = OrderedDict(
    [
        # Add configs here
        ("visual_bert", VisualBertConfig),
        ("canine", CanineConfig),
        ("roformer", RoFormerConfig),
        ("clip", CLIPConfig),
        ("bigbird_pegasus", BigBirdPegasusConfig),
        ("deit", DeiTConfig),
        ("luke", LukeConfig),
        ("detr", DetrConfig),
        ("gpt_neo", GPTNeoConfig),
        ("big_bird", BigBirdConfig),
        ("speech_to_text", Speech2TextConfig),
        ("vit", ViTConfig),
        ("wav2vec2", Wav2Vec2Config),
        ("m2m_100", M2M100Config),
        ("convbert", ConvBertConfig),
        ("led", LEDConfig),
        ("blenderbot-small", BlenderbotSmallConfig),
        ("retribert", RetriBertConfig),
        ("ibert", IBertConfig),
        ("mt5", MT5Config),
        ("t5", T5Config),
        ("mobilebert", MobileBertConfig),
        ("distilbert", DistilBertConfig),
        ("albert", AlbertConfig),
        ("bert-generation", BertGenerationConfig),
        ("camembert", CamembertConfig),
        ("xlm-roberta", XLMRobertaConfig),
        ("pegasus", PegasusConfig),
        ("marian", MarianConfig),
        ("mbart", MBartConfig),
        ("megatron-bert", MegatronBertConfig),
        ("mpnet", MPNetConfig),
        ("bart", BartConfig),
        ("blenderbot", BlenderbotConfig),
        ("reformer", ReformerConfig),
        ("longformer", LongformerConfig),
        ("roberta", RobertaConfig),
        ("deberta-v2", DebertaV2Config),
        ("deberta", DebertaConfig),
        ("flaubert", FlaubertConfig),
        ("fsmt", FSMTConfig),
        ("squeezebert", SqueezeBertConfig),
        ("hubert", HubertConfig),
        ("bert", BertConfig),
        ("openai-gpt", OpenAIGPTConfig),
        ("gpt2", GPT2Config),
        ("transfo-xl", TransfoXLConfig),
        ("xlnet", XLNetConfig),
        ("xlm-prophetnet", XLMProphetNetConfig),
        ("prophetnet", ProphetNetConfig),
        ("xlm", XLMConfig),
        ("ctrl", CTRLConfig),
        ("electra", ElectraConfig),
        ("encoder-decoder", EncoderDecoderConfig),
        ("funnel", FunnelConfig),
        ("lxmert", LxmertConfig),
        ("dpr", DPRConfig),
        ("layoutlm", LayoutLMConfig),
        ("rag", RagConfig),
        ("tapas", TapasConfig),
    ]
)

MODEL_NAMES_MAPPING = OrderedDict(
    [
        # Add full (and cased) model names here
        ("visual_bert", "VisualBert"),
        ("canine", "Canine"),
        ("roformer", "RoFormer"),
        ("clip", "CLIP"),
        ("bigbird_pegasus", "BigBirdPegasus"),
        ("deit", "DeiT"),
        ("luke", "LUKE"),
        ("detr", "DETR"),
        ("gpt_neo", "GPT Neo"),
        ("big_bird", "BigBird"),
        ("speech_to_text", "Speech2Text"),
        ("vit", "ViT"),
        ("wav2vec2", "Wav2Vec2"),
        ("m2m_100", "M2M100"),
        ("convbert", "ConvBERT"),
        ("led", "LED"),
        ("blenderbot-small", "BlenderbotSmall"),
        ("retribert", "RetriBERT"),
        ("ibert", "I-BERT"),
        ("t5", "T5"),
        ("mobilebert", "MobileBERT"),
        ("distilbert", "DistilBERT"),
        ("albert", "ALBERT"),
        ("bert-generation", "Bert Generation"),
        ("camembert", "CamemBERT"),
        ("xlm-roberta", "XLM-RoBERTa"),
        ("pegasus", "Pegasus"),
        ("blenderbot", "Blenderbot"),
        ("marian", "Marian"),
        ("mbart", "mBART"),
        ("megatron-bert", "MegatronBert"),
        ("bart", "BART"),
        ("reformer", "Reformer"),
        ("longformer", "Longformer"),
        ("roberta", "RoBERTa"),
        ("flaubert", "FlauBERT"),
        ("fsmt", "FairSeq Machine-Translation"),
        ("squeezebert", "SqueezeBERT"),
        ("bert", "BERT"),
        ("openai-gpt", "OpenAI GPT"),
        ("gpt2", "OpenAI GPT-2"),
        ("transfo-xl", "Transformer-XL"),
        ("xlnet", "XLNet"),
        ("xlm", "XLM"),
        ("ctrl", "CTRL"),
        ("electra", "ELECTRA"),
        ("encoder-decoder", "Encoder decoder"),
        ("funnel", "Funnel Transformer"),
        ("lxmert", "LXMERT"),
        ("deberta-v2", "DeBERTa-v2"),
        ("deberta", "DeBERTa"),
        ("layoutlm", "LayoutLM"),
        ("dpr", "DPR"),
        ("rag", "RAG"),
        ("xlm-prophetnet", "XLMProphetNet"),
        ("prophetnet", "ProphetNet"),
        ("mt5", "mT5"),
        ("mpnet", "MPNet"),
        ("tapas", "TAPAS"),
        ("hubert", "Hubert"),
    ]
)


def _get_class_name(model_class):
    if isinstance(model_class, (list, tuple)):
        return " or ".join([f":class:`~transformers.{c.__name__}`" for c in model_class])
    return f":class:`~transformers.{model_class.__name__}`"


def _list_model_options(indent, config_to_class=None, use_model_types=True):
    if config_to_class is None and not use_model_types:
        raise ValueError("Using `use_model_types=False` requires a `config_to_class` dictionary.")
    if use_model_types:
        if config_to_class is None:
            model_type_to_name = {
                model_type: f":class:`~transformers.{config.__name__}`"
                for model_type, config in CONFIG_MAPPING.items()
            }
        else:
            model_type_to_name = {
                model_type: _get_class_name(config_to_class[config])
                for model_type, config in CONFIG_MAPPING.items()
                if config in config_to_class
            }
        lines = [
            f"{indent}- **{model_type}** -- {model_type_to_name[model_type]} ({MODEL_NAMES_MAPPING[model_type]} model)"
            for model_type in sorted(model_type_to_name.keys())
        ]
    else:
        config_to_name = {config.__name__: _get_class_name(clas) for config, clas in config_to_class.items()}
        config_to_model_name = {
            config.__name__: MODEL_NAMES_MAPPING[model_type] for model_type, config in CONFIG_MAPPING.items()
        }
        lines = [
            f"{indent}- :class:`~transformers.{config_name}` configuration class: {config_to_name[config_name]} ({config_to_model_name[config_name]} model)"
            for config_name in sorted(config_to_name.keys())
        ]
    return "\n".join(lines)


def replace_list_option_in_docstrings(config_to_class=None, use_model_types=True):
    def docstring_decorator(fn):
        docstrings = fn.__doc__
        lines = docstrings.split("\n")
        i = 0
        while i < len(lines) and re.search(r"^(\s*)List options\s*$", lines[i]) is None:
            i += 1
        if i < len(lines):
            indent = re.search(r"^(\s*)List options\s*$", lines[i]).groups()[0]
            if use_model_types:
                indent = f"{indent}    "
            lines[i] = _list_model_options(indent, config_to_class=config_to_class, use_model_types=use_model_types)
            docstrings = "\n".join(lines)
        else:
            raise ValueError(
                f"The function {fn} should have an empty 'List options' in its docstring as placeholder, current docstring is:\n{docstrings}"
            )
        fn.__doc__ = docstrings
        return fn

    return docstring_decorator


class AutoConfig:
    r"""
    This is a generic configuration class that will be instantiated as one of the configuration classes of the library
    when created with the :meth:`~transformers.AutoConfig.from_pretrained` class method.

    This class cannot be instantiated directly using ``__init__()`` (throws an error).
    """

    def __init__(self):
        raise EnvironmentError(
            "AutoConfig is designed to be instantiated "
            "using the `AutoConfig.from_pretrained(pretrained_model_name_or_path)` method."
        )

    @classmethod
    def for_model(cls, model_type: str, *args, **kwargs):
        if model_type in CONFIG_MAPPING:
            config_class = CONFIG_MAPPING[model_type]
            return config_class(*args, **kwargs)
        raise ValueError(
            f"Unrecognized model identifier: {model_type}. Should contain one of {', '.join(CONFIG_MAPPING.keys())}"
        )

    @classmethod
    @replace_list_option_in_docstrings()
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        r"""
        Instantiate one of the configuration classes of the library from a pretrained model configuration.

        The configuration class to instantiate is selected based on the :obj:`model_type` property of the config object
        that is loaded, or when it's missing, by falling back to using pattern matching on
        :obj:`pretrained_model_name_or_path`:

        List options

        Args:
            pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
                Can be either:

                    - A string, the `model id` of a pretrained model configuration hosted inside a model repo on
                      huggingface.co. Valid model ids can be located at the root-level, like ``bert-base-uncased``, or
                      namespaced under a user or organization name, like ``dbmdz/bert-base-german-cased``.
                    - A path to a `directory` containing a configuration file saved using the
                      :meth:`~transformers.PretrainedConfig.save_pretrained` method, or the
                      :meth:`~transformers.PreTrainedModel.save_pretrained` method, e.g., ``./my_model_directory/``.
                    - A path or url to a saved configuration JSON `file`, e.g.,
                      ``./my_model_directory/configuration.json``.
            cache_dir (:obj:`str` or :obj:`os.PathLike`, `optional`):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to force the (re-)download the model weights and configuration files and override the
                cached versions if they exist.
            resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (:obj:`Dict[str, str]`, `optional`):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            revision(:obj:`str`, `optional`, defaults to :obj:`"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
                identifier allowed by git.
            return_unused_kwargs (:obj:`bool`, `optional`, defaults to :obj:`False`):
                If :obj:`False`, then this function returns just the final configuration object.

                If :obj:`True`, then this functions returns a :obj:`Tuple(config, unused_kwargs)` where `unused_kwargs`
                is a dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e.,
                the part of ``kwargs`` which has not been used to update ``config`` and is otherwise ignored.
            kwargs(additional keyword arguments, `optional`):
                The values in kwargs of any keys which are configuration attributes will be used to override the loaded
                values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
                by the ``return_unused_kwargs`` keyword parameter.

        Examples::

            >>> from transformers import AutoConfig

            >>> # Download configuration from huggingface.co and cache.
            >>> config = AutoConfig.from_pretrained('bert-base-uncased')

            >>> # Download configuration from huggingface.co (user-uploaded) and cache.
            >>> config = AutoConfig.from_pretrained('dbmdz/bert-base-german-cased')

            >>> # If configuration file is in a directory (e.g., was saved using `save_pretrained('./test/saved_model/')`).
            >>> config = AutoConfig.from_pretrained('./test/bert_saved_model/')

            >>> # Load a specific configuration file.
            >>> config = AutoConfig.from_pretrained('./test/bert_saved_model/my_configuration.json')

            >>> # Change some config attributes when loading a pretrained config.
            >>> config = AutoConfig.from_pretrained('bert-base-uncased', output_attentions=True, foo=False)
            >>> config.output_attentions
            True
            >>> config, unused_kwargs = AutoConfig.from_pretrained('bert-base-uncased', output_attentions=True, foo=False, return_unused_kwargs=True)
            >>> config.output_attentions
            True
            >>> config.unused_kwargs
            {'foo': False}
        """
        kwargs["_from_auto"] = True
        config_dict, _ = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs)
        if "model_type" in config_dict:
            config_class = CONFIG_MAPPING[config_dict["model_type"]]
            return config_class.from_dict(config_dict, **kwargs)
        else:
            # Fallback: use pattern matching on the string.
            for pattern, config_class in CONFIG_MAPPING.items():
                if pattern in str(pretrained_model_name_or_path):
                    return config_class.from_dict(config_dict, **kwargs)

        raise ValueError(
            f"Unrecognized model in {pretrained_model_name_or_path}. "
            "Should have a `model_type` key in its config.json, or contain one of the following strings "
            f"in its name: {', '.join(CONFIG_MAPPING.keys())}"
        )