File size: 27,603 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Factory function to build auto-model classes."""

from ...configuration_utils import PretrainedConfig
from ...file_utils import copy_func
from ...utils import logging
from .configuration_auto import AutoConfig, replace_list_option_in_docstrings


logger = logging.get_logger(__name__)


CLASS_DOCSTRING = """
    This is a generic model class that will be instantiated as one of the model classes of the library when created
    with the :meth:`~transformers.BaseAutoModelClass.from_pretrained` class method or the
    :meth:`~transformers.BaseAutoModelClass.from_config` class method.

    This class cannot be instantiated directly using ``__init__()`` (throws an error).
"""

FROM_CONFIG_DOCSTRING = """
        Instantiates one of the model classes of the library from a configuration.

        Note:
            Loading a model from its configuration file does **not** load the model weights. It only affects the
            model's configuration. Use :meth:`~transformers.BaseAutoModelClass.from_pretrained` to load the model
            weights.

        Args:
            config (:class:`~transformers.PretrainedConfig`):
                The model class to instantiate is selected based on the configuration class:

                List options

        Examples::

            >>> from transformers import AutoConfig, BaseAutoModelClass
            >>> # Download configuration from huggingface.co and cache.
            >>> config = AutoConfig.from_pretrained('checkpoint_placeholder')
            >>> model = BaseAutoModelClass.from_config(config)
"""

FROM_PRETRAINED_TORCH_DOCSTRING = """
        Instantiate one of the model classes of the library from a pretrained model.

        The model class to instantiate is selected based on the :obj:`model_type` property of the config object (either
        passed as an argument or loaded from :obj:`pretrained_model_name_or_path` if possible), or when it's missing,
        by falling back to using pattern matching on :obj:`pretrained_model_name_or_path`:

        List options

        The model is set in evaluation mode by default using ``model.eval()`` (so for instance, dropout modules are
        deactivated). To train the model, you should first set it back in training mode with ``model.train()``

        Args:
            pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
                Can be either:

                    - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
                      a user or organization name, like ``dbmdz/bert-base-german-cased``.
                    - A path to a `directory` containing model weights saved using
                      :func:`~transformers.PreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
                    - A path or url to a `tensorflow index checkpoint file` (e.g, ``./tf_model/model.ckpt.index``). In
                      this case, ``from_tf`` should be set to :obj:`True` and a configuration object should be provided
                      as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in
                      a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
            model_args (additional positional arguments, `optional`):
                Will be passed along to the underlying model ``__init__()`` method.
            config (:class:`~transformers.PretrainedConfig`, `optional`):
                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
                be automatically loaded when:

                    - The model is a model provided by the library (loaded with the `model id` string of a pretrained
                      model).
                    - The model was saved using :meth:`~transformers.PreTrainedModel.save_pretrained` and is reloaded
                      by supplying the save directory.
                    - The model is loaded by supplying a local directory as ``pretrained_model_name_or_path`` and a
                      configuration JSON file named `config.json` is found in the directory.
            state_dict (`Dict[str, torch.Tensor]`, `optional`):
                A state dictionary to use instead of a state dictionary loaded from saved weights file.

                This option can be used if you want to create a model from a pretrained configuration but load your own
                weights. In this case though, you should check if using
                :func:`~transformers.PreTrainedModel.save_pretrained` and
                :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
            cache_dir (:obj:`str` or :obj:`os.PathLike`, `optional`):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            from_tf (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Load the model weights from a TensorFlow checkpoint save file (see docstring of
                ``pretrained_model_name_or_path`` argument).
            force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (:obj:`Dict[str, str], `optional`):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to only look at local files (e.g., not try downloading the model).
            revision(:obj:`str`, `optional`, defaults to :obj:`"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
                identifier allowed by git.
            kwargs (additional keyword arguments, `optional`):
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
                :obj:`output_attentions=True`). Behaves differently depending on whether a ``config`` is provided or
                automatically loaded:

                    - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the
                      underlying model's ``__init__`` method (we assume all relevant updates to the configuration have
                      already been done)
                    - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class
                      initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of
                      ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute
                      with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration
                      attribute will be passed to the underlying model's ``__init__`` function.

        Examples::

            >>> from transformers import AutoConfig, BaseAutoModelClass

            >>> # Download model and configuration from huggingface.co and cache.
            >>> model = BaseAutoModelClass.from_pretrained('checkpoint_placeholder')

            >>> # Update configuration during loading
            >>> model = BaseAutoModelClass.from_pretrained('checkpoint_placeholder', output_attentions=True)
            >>> model.config.output_attentions
            True

            >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            >>> config = AutoConfig.from_pretrained('./tf_model/shortcut_placeholder_tf_model_config.json')
            >>> model = BaseAutoModelClass.from_pretrained('./tf_model/shortcut_placeholder_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""

FROM_PRETRAINED_TF_DOCSTRING = """
        Instantiate one of the model classes of the library from a pretrained model.

        The model class to instantiate is selected based on the :obj:`model_type` property of the config object (either
        passed as an argument or loaded from :obj:`pretrained_model_name_or_path` if possible), or when it's missing,
        by falling back to using pattern matching on :obj:`pretrained_model_name_or_path`:

        List options

        Args:
            pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
                Can be either:

                    - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
                      a user or organization name, like ``dbmdz/bert-base-german-cased``.
                    - A path to a `directory` containing model weights saved using
                      :func:`~transformers.PreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
                    - A path or url to a `PyTorch state_dict save file` (e.g, ``./pt_model/pytorch_model.bin``). In
                      this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided
                      as ``config`` argument. This loading path is slower than converting the PyTorch model in a
                      TensorFlow model using the provided conversion scripts and loading the TensorFlow model
                      afterwards.
            model_args (additional positional arguments, `optional`):
                Will be passed along to the underlying model ``__init__()`` method.
            config (:class:`~transformers.PretrainedConfig`, `optional`):
                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
                be automatically loaded when:

                    - The model is a model provided by the library (loaded with the `model id` string of a pretrained
                      model).
                    - The model was saved using :meth:`~transformers.PreTrainedModel.save_pretrained` and is reloaded
                      by supplying the save directory.
                    - The model is loaded by supplying a local directory as ``pretrained_model_name_or_path`` and a
                      configuration JSON file named `config.json` is found in the directory.
            cache_dir (:obj:`str` or :obj:`os.PathLike`, `optional`):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            from_pt (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Load the model weights from a PyTorch checkpoint save file (see docstring of
                ``pretrained_model_name_or_path`` argument).
            force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (:obj:`Dict[str, str], `optional`):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to only look at local files (e.g., not try downloading the model).
            revision(:obj:`str`, `optional`, defaults to :obj:`"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
                identifier allowed by git.
            kwargs (additional keyword arguments, `optional`):
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
                :obj:`output_attentions=True`). Behaves differently depending on whether a ``config`` is provided or
                automatically loaded:

                    - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the
                      underlying model's ``__init__`` method (we assume all relevant updates to the configuration have
                      already been done)
                    - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class
                      initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of
                      ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute
                      with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration
                      attribute will be passed to the underlying model's ``__init__`` function.

        Examples::

            >>> from transformers import AutoConfig, BaseAutoModelClass

            >>> # Download model and configuration from huggingface.co and cache.
            >>> model = BaseAutoModelClass.from_pretrained('checkpoint_placeholder')

            >>> # Update configuration during loading
            >>> model = BaseAutoModelClass.from_pretrained('checkpoint_placeholder', output_attentions=True)
            >>> model.config.output_attentions
            True

            >>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
            >>> config = AutoConfig.from_pretrained('./pt_model/shortcut_placeholder_pt_model_config.json')
            >>> model = BaseAutoModelClass.from_pretrained('./pt_model/shortcut_placeholder_pytorch_model.bin', from_pt=True, config=config)
"""

FROM_PRETRAINED_FLAX_DOCSTRING = """
        Instantiate one of the model classes of the library from a pretrained model.

        The model class to instantiate is selected based on the :obj:`model_type` property of the config object (either
        passed as an argument or loaded from :obj:`pretrained_model_name_or_path` if possible), or when it's missing,
        by falling back to using pattern matching on :obj:`pretrained_model_name_or_path`:

        List options

        Args:
            pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
                Can be either:

                    - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
                      a user or organization name, like ``dbmdz/bert-base-german-cased``.
                    - A path to a `directory` containing model weights saved using
                      :func:`~transformers.PreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
                    - A path or url to a `PyTorch state_dict save file` (e.g, ``./pt_model/pytorch_model.bin``). In
                      this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided
                      as ``config`` argument. This loading path is slower than converting the PyTorch model in a
                      TensorFlow model using the provided conversion scripts and loading the TensorFlow model
                      afterwards.
            model_args (additional positional arguments, `optional`):
                Will be passed along to the underlying model ``__init__()`` method.
            config (:class:`~transformers.PretrainedConfig`, `optional`):
                Configuration for the model to use instead of an automatically loaded configuration. Configuration can
                be automatically loaded when:

                    - The model is a model provided by the library (loaded with the `model id` string of a pretrained
                      model).
                    - The model was saved using :meth:`~transformers.PreTrainedModel.save_pretrained` and is reloaded
                      by supplying the save directory.
                    - The model is loaded by supplying a local directory as ``pretrained_model_name_or_path`` and a
                      configuration JSON file named `config.json` is found in the directory.
            cache_dir (:obj:`str` or :obj:`os.PathLike`, `optional`):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            from_pt (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Load the model weights from a PyTorch checkpoint save file (see docstring of
                ``pretrained_model_name_or_path`` argument).
            force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (:obj:`Dict[str, str], `optional`):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
            local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to only look at local files (e.g., not try downloading the model).
            revision(:obj:`str`, `optional`, defaults to :obj:`"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
                identifier allowed by git.
            kwargs (additional keyword arguments, `optional`):
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
                :obj:`output_attentions=True`). Behaves differently depending on whether a ``config`` is provided or
                automatically loaded:

                    - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the
                      underlying model's ``__init__`` method (we assume all relevant updates to the configuration have
                      already been done)
                    - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class
                      initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of
                      ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute
                      with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration
                      attribute will be passed to the underlying model's ``__init__`` function.

        Examples::

            >>> from transformers import AutoConfig, BaseAutoModelClass

            >>> # Download model and configuration from huggingface.co and cache.
            >>> model = BaseAutoModelClass.from_pretrained('checkpoint_placeholder')

            >>> # Update configuration during loading
            >>> model = BaseAutoModelClass.from_pretrained('checkpoint_placeholder', output_attentions=True)
            >>> model.config.output_attentions
            True

            >>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
            >>> config = AutoConfig.from_pretrained('./pt_model/shortcut_placeholder_pt_model_config.json')
            >>> model = BaseAutoModelClass.from_pretrained('./pt_model/shortcut_placeholder_pytorch_model.bin', from_pt=True, config=config)
"""


def _get_model_class(config, model_mapping):
    supported_models = model_mapping[type(config)]
    if not isinstance(supported_models, (list, tuple)):
        return supported_models

    name_to_model = {model.__name__: model for model in supported_models}
    architectures = getattr(config, "architectures", [])
    for arch in architectures:
        if arch in name_to_model:
            return name_to_model[arch]
        elif f"TF{arch}" in name_to_model:
            return name_to_model[f"TF{arch}"]
        elif f"Flax{arch}" in name_to_model:
            return name_to_model[f"Flax{arch}"]

    # If not architecture is set in the config or match the supported models, the first element of the tuple is the
    # defaults.
    return supported_models[0]


class _BaseAutoModelClass:
    # Base class for auto models.
    _model_mapping = None

    def __init__(self, *args, **kwargs):
        raise EnvironmentError(
            f"{self.__class__.__name__} is designed to be instantiated "
            f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
            f"`{self.__class__.__name__}.from_config(config)` methods."
        )

    def from_config(cls, config, **kwargs):
        if type(config) in cls._model_mapping.keys():
            model_class = _get_model_class(config, cls._model_mapping)
            return model_class._from_config(config, **kwargs)

        raise ValueError(
            f"Unrecognized configuration class {config.__class__} for this kind of AutoModel: {cls.__name__}.\n"
            f"Model type should be one of {', '.join(c.__name__ for c in cls._model_mapping.keys())}."
        )

    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        config = kwargs.pop("config", None)
        kwargs["_from_auto"] = True
        if not isinstance(config, PretrainedConfig):
            config, kwargs = AutoConfig.from_pretrained(
                pretrained_model_name_or_path, return_unused_kwargs=True, **kwargs
            )

        if type(config) in cls._model_mapping.keys():
            model_class = _get_model_class(config, cls._model_mapping)
            return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs)
        raise ValueError(
            f"Unrecognized configuration class {config.__class__} for this kind of AutoModel: {cls.__name__}.\n"
            f"Model type should be one of {', '.join(c.__name__ for c in cls._model_mapping.keys())}."
        )


def insert_head_doc(docstring, head_doc=""):
    if len(head_doc) > 0:
        return docstring.replace(
            "one of the model classes of the library ",
            f"one of the model classes of the library (with a {head_doc} head) ",
        )
    return docstring.replace(
        "one of the model classes of the library ", "one of the base model classes of the library "
    )


def auto_class_update(cls, checkpoint_for_example="bert-base-cased", head_doc=""):
    # Create a new class with the right name from the base class
    model_mapping = cls._model_mapping
    name = cls.__name__
    class_docstring = insert_head_doc(CLASS_DOCSTRING, head_doc=head_doc)
    cls.__doc__ = class_docstring.replace("BaseAutoModelClass", name)

    # Now we need to copy and re-register `from_config` and `from_pretrained` as class methods otherwise we can't
    # have a specific docstrings for them.
    from_config = copy_func(_BaseAutoModelClass.from_config)
    from_config_docstring = insert_head_doc(FROM_CONFIG_DOCSTRING, head_doc=head_doc)
    from_config_docstring = from_config_docstring.replace("BaseAutoModelClass", name)
    from_config_docstring = from_config_docstring.replace("checkpoint_placeholder", checkpoint_for_example)
    from_config.__doc__ = from_config_docstring
    from_config = replace_list_option_in_docstrings(model_mapping, use_model_types=False)(from_config)
    cls.from_config = classmethod(from_config)

    if name.startswith("TF"):
        from_pretrained_docstring = FROM_PRETRAINED_TF_DOCSTRING
    elif name.startswith("Flax"):
        from_pretrained_docstring = FROM_PRETRAINED_FLAX_DOCSTRING
    else:
        from_pretrained_docstring = FROM_PRETRAINED_TORCH_DOCSTRING
    from_pretrained = copy_func(_BaseAutoModelClass.from_pretrained)
    from_pretrained_docstring = insert_head_doc(from_pretrained_docstring, head_doc=head_doc)
    from_pretrained_docstring = from_pretrained_docstring.replace("BaseAutoModelClass", name)
    from_pretrained_docstring = from_pretrained_docstring.replace("checkpoint_placeholder", checkpoint_for_example)
    shortcut = checkpoint_for_example.split("/")[-1].split("-")[0]
    from_pretrained_docstring = from_pretrained_docstring.replace("shortcut_placeholder", shortcut)
    from_pretrained.__doc__ = from_pretrained_docstring
    from_pretrained = replace_list_option_in_docstrings(model_mapping)(from_pretrained)
    cls.from_pretrained = classmethod(from_pretrained)
    return cls


def get_values(model_mapping):
    result = []
    for model in model_mapping.values():
        if isinstance(model, (list, tuple)):
            result += list(model)
        else:
            result.append(model)

    return result