File size: 17,997 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch - TF 2.0 general utilities."""


import os
import re

import numpy

from .utils import logging


logger = logging.get_logger(__name__)


def convert_tf_weight_name_to_pt_weight_name(tf_name, start_prefix_to_remove=""):
    """
    Convert a TF 2.0 model variable name in a pytorch model weight name.

    Conventions for TF2.0 scopes -> PyTorch attribute names conversions:

        - '$1___$2' is replaced by $2 (can be used to duplicate or remove layers in TF2.0 vs PyTorch)
        - '_._' is replaced by a new level separation (can be used to convert TF2.0 lists in PyTorch nn.ModulesList)

    return tuple with:

        - pytorch model weight name
        - transpose: boolean indicating whether TF2.0 and PyTorch weights matrices are transposed with regards to each
          other
    """
    tf_name = tf_name.replace(":0", "")  # device ids
    tf_name = re.sub(
        r"/[^/]*___([^/]*)/", r"/\1/", tf_name
    )  # '$1___$2' is replaced by $2 (can be used to duplicate or remove layers in TF2.0 vs PyTorch)
    tf_name = tf_name.replace(
        "_._", "/"
    )  # '_._' is replaced by a level separation (can be used to convert TF2.0 lists in PyTorch nn.ModulesList)
    tf_name = re.sub(r"//+", "/", tf_name)  # Remove empty levels at the end
    tf_name = tf_name.split("/")  # Convert from TF2.0 '/' separators to PyTorch '.' separators
    # Some weights have a single name without "/" such as final_logits_bias in BART
    if len(tf_name) > 1:
        tf_name = tf_name[1:]  # Remove level zero

    # When should we transpose the weights
    transpose = bool(
        tf_name[-1] in ["kernel", "pointwise_kernel", "depthwise_kernel"]
        or "emb_projs" in tf_name
        or "out_projs" in tf_name
    )

    # Convert standard TF2.0 names in PyTorch names
    if tf_name[-1] == "kernel" or tf_name[-1] == "embeddings" or tf_name[-1] == "gamma":
        tf_name[-1] = "weight"
    if tf_name[-1] == "beta":
        tf_name[-1] = "bias"

    # The SeparableConv1D TF layer contains two weights that are translated to PyTorch Conv1D here
    if tf_name[-1] == "pointwise_kernel" or tf_name[-1] == "depthwise_kernel":
        tf_name[-1] = tf_name[-1].replace("_kernel", ".weight")

    # Remove prefix if needed
    tf_name = ".".join(tf_name)
    if start_prefix_to_remove:
        tf_name = tf_name.replace(start_prefix_to_remove, "", 1)

    return tf_name, transpose


#####################
# PyTorch => TF 2.0 #
#####################


def load_pytorch_checkpoint_in_tf2_model(tf_model, pytorch_checkpoint_path, tf_inputs=None, allow_missing_keys=False):
    """Load pytorch checkpoints in a TF 2.0 model"""
    try:
        import tensorflow as tf  # noqa: F401
        import torch  # noqa: F401
    except ImportError:
        logger.error(
            "Loading a PyTorch model in TensorFlow, requires both PyTorch and TensorFlow to be installed. Please see "
            "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions."
        )
        raise

    pt_path = os.path.abspath(pytorch_checkpoint_path)
    logger.info(f"Loading PyTorch weights from {pt_path}")

    pt_state_dict = torch.load(pt_path, map_location="cpu")
    logger.info(f"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values()):,} parameters")

    return load_pytorch_weights_in_tf2_model(
        tf_model, pt_state_dict, tf_inputs=tf_inputs, allow_missing_keys=allow_missing_keys
    )


def load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=None, allow_missing_keys=False):
    """Load pytorch checkpoints in a TF 2.0 model"""
    pt_state_dict = pt_model.state_dict()

    return load_pytorch_weights_in_tf2_model(
        tf_model, pt_state_dict, tf_inputs=tf_inputs, allow_missing_keys=allow_missing_keys
    )


def load_pytorch_weights_in_tf2_model(tf_model, pt_state_dict, tf_inputs=None, allow_missing_keys=False):
    """Load pytorch state_dict in a TF 2.0 model."""
    try:
        import tensorflow as tf  # noqa: F401
        import torch  # noqa: F401
        from tensorflow.python.keras import backend as K
    except ImportError:
        logger.error(
            "Loading a PyTorch model in TensorFlow, requires both PyTorch and TensorFlow to be installed. Please see "
            "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions."
        )
        raise

    if tf_inputs is None:
        tf_inputs = tf_model.dummy_inputs

    if tf_inputs is not None:
        tf_model(tf_inputs, training=False)  # Make sure model is built
    # Adapt state dict - TODO remove this and update the AWS weights files instead
    # Convert old format to new format if needed from a PyTorch state_dict
    old_keys = []
    new_keys = []
    for key in pt_state_dict.keys():
        new_key = None
        if "gamma" in key:
            new_key = key.replace("gamma", "weight")
        if "beta" in key:
            new_key = key.replace("beta", "bias")
        if new_key:
            old_keys.append(key)
            new_keys.append(new_key)
    for old_key, new_key in zip(old_keys, new_keys):
        pt_state_dict[new_key] = pt_state_dict.pop(old_key)

    # Make sure we are able to load PyTorch base models as well as derived models (with heads)
    # TF models always have a prefix, some of PyTorch models (base ones) don't
    start_prefix_to_remove = ""
    if not any(s.startswith(tf_model.base_model_prefix) for s in pt_state_dict.keys()):
        start_prefix_to_remove = tf_model.base_model_prefix + "."

    symbolic_weights = tf_model.trainable_weights + tf_model.non_trainable_weights
    tf_loaded_numel = 0
    weight_value_tuples = []
    all_pytorch_weights = set(list(pt_state_dict.keys()))
    missing_keys = []
    for symbolic_weight in symbolic_weights:
        sw_name = symbolic_weight.name
        name, transpose = convert_tf_weight_name_to_pt_weight_name(
            sw_name, start_prefix_to_remove=start_prefix_to_remove
        )

        # Find associated numpy array in pytorch model state dict
        if name not in pt_state_dict:
            if allow_missing_keys:
                missing_keys.append(name)
                continue
            elif tf_model._keys_to_ignore_on_load_missing is not None:
                # authorized missing keys don't have to be loaded
                if any(re.search(pat, name) is not None for pat in tf_model._keys_to_ignore_on_load_missing):
                    continue

            raise AttributeError(f"{name} not found in PyTorch model")

        array = pt_state_dict[name].numpy()

        if transpose:
            array = numpy.transpose(array)

        if len(symbolic_weight.shape) < len(array.shape):
            array = numpy.squeeze(array)
        elif len(symbolic_weight.shape) > len(array.shape):
            array = numpy.expand_dims(array, axis=0)

        if list(symbolic_weight.shape) != list(array.shape):
            try:
                array = numpy.reshape(array, symbolic_weight.shape)
            except AssertionError as e:
                e.args += (symbolic_weight.shape, array.shape)
                raise e

        try:
            assert list(symbolic_weight.shape) == list(array.shape)
        except AssertionError as e:
            e.args += (symbolic_weight.shape, array.shape)
            raise e

        tf_loaded_numel += array.size
        # logger.warning(f"Initialize TF weight {symbolic_weight.name}")

        weight_value_tuples.append((symbolic_weight, array))
        all_pytorch_weights.discard(name)

    K.batch_set_value(weight_value_tuples)

    if tf_inputs is not None:
        tf_model(tf_inputs, training=False)  # Make sure restore ops are run

    logger.info(f"Loaded {tf_loaded_numel:,} parameters in the TF 2.0 model.")

    unexpected_keys = list(all_pytorch_weights)

    if tf_model._keys_to_ignore_on_load_missing is not None:
        for pat in tf_model._keys_to_ignore_on_load_missing:
            missing_keys = [k for k in missing_keys if re.search(pat, k) is None]
    if tf_model._keys_to_ignore_on_load_unexpected is not None:
        for pat in tf_model._keys_to_ignore_on_load_unexpected:
            unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

    if len(unexpected_keys) > 0:
        logger.warning(
            f"Some weights of the PyTorch model were not used when "
            f"initializing the TF 2.0 model {tf_model.__class__.__name__}: {unexpected_keys}\n"
            f"- This IS expected if you are initializing {tf_model.__class__.__name__} from a PyTorch model trained on another task "
            f"or with another architecture (e.g. initializing a TFBertForSequenceClassification model from a BertForPreTraining model).\n"
            f"- This IS NOT expected if you are initializing {tf_model.__class__.__name__} from a PyTorch model that you expect "
            f"to be exactly identical (e.g. initializing a TFBertForSequenceClassification model from a BertForSequenceClassification model)."
        )
    else:
        logger.warning(f"All PyTorch model weights were used when initializing {tf_model.__class__.__name__}.\n")
    if len(missing_keys) > 0:
        logger.warning(
            f"Some weights or buffers of the TF 2.0 model {tf_model.__class__.__name__} were not initialized from the PyTorch model "
            f"and are newly initialized: {missing_keys}\n"
            f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
        )
    else:
        logger.warning(
            f"All the weights of {tf_model.__class__.__name__} were initialized from the PyTorch model.\n"
            f"If your task is similar to the task the model of the checkpoint was trained on, "
            f"you can already use {tf_model.__class__.__name__} for predictions without further training."
        )

    return tf_model


#####################
# TF 2.0 => PyTorch #
#####################


def load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path, tf_inputs=None, allow_missing_keys=False):
    """
    Load TF 2.0 HDF5 checkpoint in a PyTorch model We use HDF5 to easily do transfer learning (see
    https://github.com/tensorflow/tensorflow/blob/ee16fcac960ae660e0e4496658a366e2f745e1f0/tensorflow/python/keras/engine/network.py#L1352-L1357).
    """
    try:
        import tensorflow as tf  # noqa: F401
        import torch  # noqa: F401
    except ImportError:
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see "
            "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions."
        )
        raise

    import transformers

    from .modeling_tf_utils import load_tf_weights

    logger.info(f"Loading TensorFlow weights from {tf_checkpoint_path}")

    # Instantiate and load the associated TF 2.0 model
    tf_model_class_name = "TF" + pt_model.__class__.__name__  # Add "TF" at the beginning
    tf_model_class = getattr(transformers, tf_model_class_name)
    tf_model = tf_model_class(pt_model.config)

    if tf_inputs is None:
        tf_inputs = tf_model.dummy_inputs

    if tf_inputs is not None:
        tf_model(tf_inputs, training=False)  # Make sure model is built

    load_tf_weights(tf_model, tf_checkpoint_path)

    return load_tf2_model_in_pytorch_model(pt_model, tf_model, allow_missing_keys=allow_missing_keys)


def load_tf2_model_in_pytorch_model(pt_model, tf_model, allow_missing_keys=False):
    """Load TF 2.0 model in a pytorch model"""
    weights = tf_model.weights

    return load_tf2_weights_in_pytorch_model(pt_model, weights, allow_missing_keys=allow_missing_keys)


def load_tf2_weights_in_pytorch_model(pt_model, tf_weights, allow_missing_keys=False):
    """Load TF2.0 symbolic weights in a PyTorch model"""
    try:
        import tensorflow as tf  # noqa: F401
        import torch  # noqa: F401
    except ImportError:
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see "
            "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions."
        )
        raise

    new_pt_params_dict = {}
    current_pt_params_dict = dict(pt_model.named_parameters())

    # Make sure we are able to load PyTorch base models as well as derived models (with heads)
    # TF models always have a prefix, some of PyTorch models (base ones) don't
    start_prefix_to_remove = ""
    if not any(s.startswith(pt_model.base_model_prefix) for s in current_pt_params_dict.keys()):
        start_prefix_to_remove = pt_model.base_model_prefix + "."

    # Build a map from potential PyTorch weight names to TF 2.0 Variables
    tf_weights_map = {}
    for tf_weight in tf_weights:
        pt_name, transpose = convert_tf_weight_name_to_pt_weight_name(
            tf_weight.name, start_prefix_to_remove=start_prefix_to_remove
        )
        tf_weights_map[pt_name] = (tf_weight.numpy(), transpose)

    all_tf_weights = set(list(tf_weights_map.keys()))
    loaded_pt_weights_data_ptr = {}
    missing_keys_pt = []

    for pt_weight_name, pt_weight in current_pt_params_dict.items():
        # Handle PyTorch shared weight ()not duplicated in TF 2.0
        if pt_weight.data_ptr() in loaded_pt_weights_data_ptr:
            new_pt_params_dict[pt_weight_name] = loaded_pt_weights_data_ptr[pt_weight.data_ptr()]
            continue

        # Find associated numpy array in pytorch model state dict
        if pt_weight_name not in tf_weights_map:
            if allow_missing_keys:
                missing_keys_pt.append(pt_weight_name)
                continue

            raise AttributeError(f"{pt_weight_name} not found in TF 2.0 model")

        array, transpose = tf_weights_map[pt_weight_name]

        if transpose:
            array = numpy.transpose(array)

        if len(pt_weight.shape) < len(array.shape):
            array = numpy.squeeze(array)
        elif len(pt_weight.shape) > len(array.shape):
            array = numpy.expand_dims(array, axis=0)

        if list(pt_weight.shape) != list(array.shape):
            try:
                array = numpy.reshape(array, pt_weight.shape)
            except AssertionError as e:
                e.args += (pt_weight.shape, array.shape)
                raise e

        try:
            assert list(pt_weight.shape) == list(array.shape)
        except AssertionError as e:
            e.args += (pt_weight.shape, array.shape)
            raise e

        # logger.warning(f"Initialize PyTorch weight {pt_weight_name}")

        new_pt_params_dict[pt_weight_name] = torch.from_numpy(array)
        loaded_pt_weights_data_ptr[pt_weight.data_ptr()] = torch.from_numpy(array)
        all_tf_weights.discard(pt_weight_name)

    missing_keys, unexpected_keys = pt_model.load_state_dict(new_pt_params_dict, strict=False)
    missing_keys += missing_keys_pt

    # Some models may have keys that are not in the state by design, removing them before needlessly warning
    # the user.
    if pt_model._keys_to_ignore_on_load_missing is not None:
        for pat in pt_model._keys_to_ignore_on_load_missing:
            missing_keys = [k for k in missing_keys if re.search(pat, k) is None]

    if pt_model._keys_to_ignore_on_load_unexpected is not None:
        for pat in pt_model._keys_to_ignore_on_load_unexpected:
            unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

    if len(unexpected_keys) > 0:
        logger.warning(
            f"Some weights of the TF 2.0 model were not used when "
            f"initializing the PyTorch model {pt_model.__class__.__name__}: {unexpected_keys}\n"
            f"- This IS expected if you are initializing {pt_model.__class__.__name__} from a TF 2.0 model trained on another task "
            f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a TFBertForPreTraining model).\n"
            f"- This IS NOT expected if you are initializing {pt_model.__class__.__name__} from a TF 2.0 model that you expect "
            f"to be exactly identical (e.g. initializing a BertForSequenceClassification model from a TFBertForSequenceClassification model)."
        )
    else:
        logger.warning(f"All TF 2.0 model weights were used when initializing {pt_model.__class__.__name__}.\n")
    if len(missing_keys) > 0:
        logger.warning(
            f"Some weights of {pt_model.__class__.__name__} were not initialized from the TF 2.0 model "
            f"and are newly initialized: {missing_keys}\n"
            f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
        )
    else:
        logger.warning(
            f"All the weights of {pt_model.__class__.__name__} were initialized from the TF 2.0 model.\n"
            f"If your task is similar to the task the model of the checkpoint was trained on, "
            f"you can already use {pt_model.__class__.__name__} for predictions without further training."
        )

    logger.info(f"Weights or buffers not loaded from TF 2.0 model: {all_tf_weights}")

    return pt_model