File size: 10,711 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import dataclasses
import json
import re
import sys
from argparse import ArgumentParser, ArgumentTypeError
from enum import Enum
from pathlib import Path
from typing import Any, Iterable, List, NewType, Optional, Tuple, Union


DataClass = NewType("DataClass", Any)
DataClassType = NewType("DataClassType", Any)


# From https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
def string_to_bool(v):
    if isinstance(v, bool):
        return v
    if v.lower() in ("yes", "true", "t", "y", "1"):
        return True
    elif v.lower() in ("no", "false", "f", "n", "0"):
        return False
    else:
        raise ArgumentTypeError(
            f"Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive)."
        )


class HfArgumentParser(ArgumentParser):
    """
    This subclass of `argparse.ArgumentParser` uses type hints on dataclasses to generate arguments.

    The class is designed to play well with the native argparse. In particular, you can add more (non-dataclass backed)
    arguments to the parser after initialization and you'll get the output back after parsing as an additional
    namespace. Optional: To create sub argument groups use the `_argument_group_name` attribute in the dataclass.
    """

    dataclass_types: Iterable[DataClassType]

    def __init__(self, dataclass_types: Union[DataClassType, Iterable[DataClassType]], **kwargs):
        """
        Args:
            dataclass_types:
                Dataclass type, or list of dataclass types for which we will "fill" instances with the parsed args.
            kwargs:
                (Optional) Passed to `argparse.ArgumentParser()` in the regular way.
        """
        super().__init__(**kwargs)
        if dataclasses.is_dataclass(dataclass_types):
            dataclass_types = [dataclass_types]
        self.dataclass_types = dataclass_types
        for dtype in self.dataclass_types:
            self._add_dataclass_arguments(dtype)

    def _add_dataclass_arguments(self, dtype: DataClassType):
        if hasattr(dtype, "_argument_group_name"):
            parser = self.add_argument_group(dtype._argument_group_name)
        else:
            parser = self
        for field in dataclasses.fields(dtype):
            if not field.init:
                continue
            field_name = f"--{field.name}"
            kwargs = field.metadata.copy()
            # field.metadata is not used at all by Data Classes,
            # it is provided as a third-party extension mechanism.
            if isinstance(field.type, str):
                raise ImportError(
                    "This implementation is not compatible with Postponed Evaluation of Annotations (PEP 563),"
                    "which can be opted in from Python 3.7 with `from __future__ import annotations`."
                    "We will add compatibility when Python 3.9 is released."
                )
            typestring = str(field.type)
            for prim_type in (int, float, str):
                for collection in (List,):
                    if (
                        typestring == f"typing.Union[{collection[prim_type]}, NoneType]"
                        or typestring == f"typing.Optional[{collection[prim_type]}]"
                    ):
                        field.type = collection[prim_type]
                if (
                    typestring == f"typing.Union[{prim_type.__name__}, NoneType]"
                    or typestring == f"typing.Optional[{prim_type.__name__}]"
                ):
                    field.type = prim_type

            if isinstance(field.type, type) and issubclass(field.type, Enum):
                kwargs["choices"] = [x.value for x in field.type]
                kwargs["type"] = type(kwargs["choices"][0])
                if field.default is not dataclasses.MISSING:
                    kwargs["default"] = field.default
                else:
                    kwargs["required"] = True
            elif field.type is bool or field.type == Optional[bool]:
                if field.default is True:
                    parser.add_argument(f"--no_{field.name}", action="store_false", dest=field.name, **kwargs)

                # Hack because type=bool in argparse does not behave as we want.
                kwargs["type"] = string_to_bool
                if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING):
                    # Default value is False if we have no default when of type bool.
                    default = False if field.default is dataclasses.MISSING else field.default
                    # This is the value that will get picked if we don't include --field_name in any way
                    kwargs["default"] = default
                    # This tells argparse we accept 0 or 1 value after --field_name
                    kwargs["nargs"] = "?"
                    # This is the value that will get picked if we do --field_name (without value)
                    kwargs["const"] = True
            elif (
                hasattr(field.type, "__origin__") and re.search(r"^typing\.List\[(.*)\]$", str(field.type)) is not None
            ):
                kwargs["nargs"] = "+"
                kwargs["type"] = field.type.__args__[0]
                assert all(
                    x == kwargs["type"] for x in field.type.__args__
                ), f"{field.name} cannot be a List of mixed types"
                if field.default_factory is not dataclasses.MISSING:
                    kwargs["default"] = field.default_factory()
                elif field.default is dataclasses.MISSING:
                    kwargs["required"] = True
            else:
                kwargs["type"] = field.type
                if field.default is not dataclasses.MISSING:
                    kwargs["default"] = field.default
                elif field.default_factory is not dataclasses.MISSING:
                    kwargs["default"] = field.default_factory()
                else:
                    kwargs["required"] = True
            parser.add_argument(field_name, **kwargs)

    def parse_args_into_dataclasses(
        self, args=None, return_remaining_strings=False, look_for_args_file=True, args_filename=None
    ) -> Tuple[DataClass, ...]:
        """
        Parse command-line args into instances of the specified dataclass types.

        This relies on argparse's `ArgumentParser.parse_known_args`. See the doc at:
        docs.python.org/3.7/library/argparse.html#argparse.ArgumentParser.parse_args

        Args:
            args:
                List of strings to parse. The default is taken from sys.argv. (same as argparse.ArgumentParser)
            return_remaining_strings:
                If true, also return a list of remaining argument strings.
            look_for_args_file:
                If true, will look for a ".args" file with the same base name as the entry point script for this
                process, and will append its potential content to the command line args.
            args_filename:
                If not None, will uses this file instead of the ".args" file specified in the previous argument.

        Returns:
            Tuple consisting of:

                - the dataclass instances in the same order as they were passed to the initializer.abspath
                - if applicable, an additional namespace for more (non-dataclass backed) arguments added to the parser
                  after initialization.
                - The potential list of remaining argument strings. (same as argparse.ArgumentParser.parse_known_args)
        """
        if args_filename or (look_for_args_file and len(sys.argv)):
            if args_filename:
                args_file = Path(args_filename)
            else:
                args_file = Path(sys.argv[0]).with_suffix(".args")

            if args_file.exists():
                fargs = args_file.read_text().split()
                args = fargs + args if args is not None else fargs + sys.argv[1:]
                # in case of duplicate arguments the first one has precedence
                # so we append rather than prepend.
        namespace, remaining_args = self.parse_known_args(args=args)
        outputs = []
        for dtype in self.dataclass_types:
            keys = {f.name for f in dataclasses.fields(dtype) if f.init}
            inputs = {k: v for k, v in vars(namespace).items() if k in keys}
            for k in keys:
                delattr(namespace, k)
            obj = dtype(**inputs)
            outputs.append(obj)
        if len(namespace.__dict__) > 0:
            # additional namespace.
            outputs.append(namespace)
        if return_remaining_strings:
            return (*outputs, remaining_args)
        else:
            if remaining_args:
                raise ValueError(f"Some specified arguments are not used by the HfArgumentParser: {remaining_args}")

            return (*outputs,)

    def parse_json_file(self, json_file: str) -> Tuple[DataClass, ...]:
        """
        Alternative helper method that does not use `argparse` at all, instead loading a json file and populating the
        dataclass types.
        """
        data = json.loads(Path(json_file).read_text())
        outputs = []
        for dtype in self.dataclass_types:
            keys = {f.name for f in dataclasses.fields(dtype) if f.init}
            inputs = {k: v for k, v in data.items() if k in keys}
            obj = dtype(**inputs)
            outputs.append(obj)
        return (*outputs,)

    def parse_dict(self, args: dict) -> Tuple[DataClass, ...]:
        """
        Alternative helper method that does not use `argparse` at all, instead uses a dict and populating the dataclass
        types.
        """
        outputs = []
        for dtype in self.dataclass_types:
            keys = {f.name for f in dataclasses.fields(dtype) if f.init}
            inputs = {k: v for k, v in args.items() if k in keys}
            obj = dtype(**inputs)
            outputs.append(obj)
        return (*outputs,)