Spaces:
Sleeping
Sleeping
File size: 143,441 Bytes
2260825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 |
# coding=utf-8
# Copyright 2020 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from dataclasses import dataclass
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union
import torch
import torch.distributed as dist
from torch import nn
from .file_utils import ModelOutput
from .generation_beam_search import BeamScorer, BeamSearchScorer
from .generation_logits_process import (
EncoderNoRepeatNGramLogitsProcessor,
ForcedBOSTokenLogitsProcessor,
ForcedEOSTokenLogitsProcessor,
HammingDiversityLogitsProcessor,
InfNanRemoveLogitsProcessor,
LogitsProcessorList,
MinLengthLogitsProcessor,
NoBadWordsLogitsProcessor,
NoRepeatNGramLogitsProcessor,
PrefixConstrainedLogitsProcessor,
RepetitionPenaltyLogitsProcessor,
TemperatureLogitsWarper,
TopKLogitsWarper,
TopPLogitsWarper,
)
from .generation_stopping_criteria import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
from .utils import logging
logger = logging.get_logger(__name__)
@dataclass
class GreedySearchDecoderOnlyOutput(ModelOutput):
"""
Base class for outputs of decoder-only generation models using greedy search.
Args:
sequences (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to :obj:`max_length` or
shorter if all batches finished early due to the :obj:`eos_token_id`.
scores (:obj:`tuple(torch.FloatTensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. :obj:`(max_length-input_ids.shape[-1],)`-shaped tuple of :obj:`torch.FloatTensor`
with each tensor of shape :obj:`(batch_size, config.vocab_size)`).
attentions (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_heads, generated_length, sequence_length)`.
hidden_states (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
:obj:`torch.FloatTensor` of shape :obj:`(batch_size, generated_length, hidden_size)`.
"""
sequences: torch.LongTensor = None
scores: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
@dataclass
class GreedySearchEncoderDecoderOutput(ModelOutput):
"""
Base class for outputs of encoder-decoder generation models using greedy search. Hidden states and attention
weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the
encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)
Args:
sequences (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to :obj:`max_length` or
shorter if all batches finished early due to the :obj:`eos_token_id`.
scores (:obj:`tuple(torch.FloatTensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. :obj:`(max_length-1,)`-shaped tuple of :obj:`torch.FloatTensor` with each tensor
of shape :obj:`(batch_size, config.vocab_size)`).
encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer of the decoder) of shape :obj:`(batch_size,
num_heads, sequence_length, sequence_length)`.
encoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
decoder_attentions (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_heads, generated_length, sequence_length)`.
cross_attentions (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_heads, generated_length, sequence_length)`.
decoder_hidden_states (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
:obj:`torch.FloatTensor` of shape :obj:`(batch_size, generated_length, hidden_size)`.
"""
sequences: torch.LongTensor = None
scores: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
@dataclass
class SampleDecoderOnlyOutput(ModelOutput):
"""
Base class for outputs of decoder-only generation models using sampling.
Args:
sequences (:obj:`torch.LongTensor` of shape :obj:`(batch_size*num_return_sequences, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to :obj:`max_length` or
shorter if all batches finished early due to the :obj:`eos_token_id`.
scores (:obj:`tuple(torch.FloatTensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. :obj:`(max_length-input_ids.shape[-1],)`-shaped tuple of :obj:`torch.FloatTensor`
with each tensor of shape :obj:`(batch_size*num_return_sequences, config.vocab_size)`).
attentions (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
:obj:`torch.FloatTensor` of shape :obj:`(num_return_sequences*batch_size, num_heads, generated_length,
sequence_length)`.
hidden_states (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
:obj:`torch.FloatTensor` of shape :obj:`(num_return_sequences*batch_size, generated_length, hidden_size)`.
"""
sequences: torch.LongTensor = None
scores: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
@dataclass
class SampleEncoderDecoderOutput(ModelOutput):
"""
Base class for outputs of encoder-decoder generation models using sampling. Hidden states and attention weights of
the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states
attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)
Args:
sequences (:obj:`torch.LongTensor` of shape :obj:`(batch_size*num_return_sequences, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to :obj:`max_length` or
shorter if all batches finished early due to the :obj:`eos_token_id`.
scores (:obj:`tuple(torch.FloatTensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. :obj:`(max_length-1,)`-shaped tuple of :obj:`torch.FloatTensor` with each tensor
of shape :obj:`(batch_size*num_return_sequences, config.vocab_size)`).
encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer of the decoder) of shape
:obj:`(batch_size*num_return_sequences, num_heads, sequence_length, sequence_length)`.
encoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size*num_return_sequences, sequence_length, hidden_size)`.
decoder_attentions (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
:obj:`torch.FloatTensor` of shape :obj:`(batch_size*num_return_sequences, num_heads, generated_length,
sequence_length)`.
cross_attentions (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_heads, generated_length, sequence_length)`.
decoder_hidden_states (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
:obj:`torch.FloatTensor` of shape :obj:`(batch_size*num_return_sequences, generated_length, hidden_size)`.
"""
sequences: torch.LongTensor = None
scores: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
@dataclass
class BeamSearchDecoderOnlyOutput(ModelOutput):
"""
Base class for outputs of decoder-only generation models using beam search.
Args:
sequences (:obj:`torch.LongTensor` of shape :obj:`(batch_size*num_return_sequences, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to :obj:`max_length` or
shorter if all batches finished early due to the :obj:`eos_token_id`.
sequences_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size*num_return_sequences)`, `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
Final beam scores of the generated ``sequences``.
scores (:obj:`tuple(torch.FloatTensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log
softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam
. :obj:`(max_length-input_ids.shape[-1],)`-shaped tuple of :obj:`torch.FloatTensor` with each tensor of
shape :obj:`(batch_size*num_beams*num_return_sequences, config.vocab_size)`).
attentions (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
:obj:`torch.FloatTensor` of shape :obj:`(batch_size*num_beams, num_heads, generated_length,
sequence_length)`.
hidden_states (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
:obj:`torch.FloatTensor` of shape :obj:`(batch_size*num_beams*num_return_sequences, generated_length,
hidden_size)`.
"""
sequences: torch.LongTensor = None
sequences_scores: Optional[torch.FloatTensor] = None
scores: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
@dataclass
class BeamSearchEncoderDecoderOutput(ModelOutput):
"""
Base class for outputs of encoder-decoder generation models using beam search. Hidden states and attention weights
of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states
attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)
Args:
sequences (:obj:`torch.LongTensor` of shape :obj:`(batch_size*num_return_sequences, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to :obj:`max_length` or
shorter if all batches finished early due to the :obj:`eos_token_id`.
sequences_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size*num_return_sequences)`, `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
Final beam scores of the generated ``sequences``.
scores (:obj:`tuple(torch.FloatTensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log
softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam
. :obj:`(max_length-1,)`-shaped tuple of :obj:`torch.FloatTensor` with each tensor of shape
:obj:`(batch_size*num_beams, config.vocab_size)`).
attentions (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer of the decoder) of shape :obj:`(batch_size,
num_heads, sequence_length, sequence_length)`.
encoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size*num_beams*num_return_sequences, sequence_length, hidden_size)`.
decoder_attentions (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
:obj:`torch.FloatTensor` of shape :obj:`(batch_size*num_beams*num_return_sequences, num_heads,
generated_length, sequence_length)`.
cross_attentions (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_heads, generated_length, sequence_length)`.
decoder_hidden_states (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
:obj:`torch.FloatTensor` of shape :obj:`(batch_size*num_beams*num_return_sequences, generated_length,
hidden_size)`.
"""
sequences: torch.LongTensor = None
sequences_scores: Optional[torch.FloatTensor] = None
scores: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
@dataclass
class BeamSampleDecoderOnlyOutput(ModelOutput):
"""
Base class for outputs of decoder-only generation models using beam sample.
Args:
sequences (:obj:`torch.LongTensor` of shape :obj:`(batch_size*num_return_sequences, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to :obj:`max_length` or
shorter if all batches finished early due to the :obj:`eos_token_id`.
sequences_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size * num_return_sequence)`, `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
Final beam scores of the generated ``sequences``.
scores (:obj:`tuple(torch.FloatTensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log
softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam
. :obj:`(max_length-input_ids.shape[-1],)`-shaped tuple of :obj:`torch.FloatTensor` with each tensor of
shape :obj:`(batch_size*num_beams*num_return_sequences, config.vocab_size)`).
attentions (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
:obj:`torch.FloatTensor` of shape :obj:`(batch_size*num_beams, num_heads, generated_length,
sequence_length)`.
hidden_states (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
:obj:`torch.FloatTensor` of shape :obj:`(batch_size*num_beams, generated_length, hidden_size)`.
"""
sequences: torch.LongTensor = None
sequences_scores: Optional[torch.FloatTensor] = None
scores: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
@dataclass
class BeamSampleEncoderDecoderOutput(ModelOutput):
"""
Base class for outputs of encoder-decoder generation models using beam sampling. Hidden states and attention
weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the
encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)
Args:
sequences (:obj:`torch.LongTensor` of shape :obj:`(batch_size*num_beams, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to :obj:`max_length` or
shorter if all batches finished early due to the :obj:`eos_token_id`.
sequences_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size * num_return_sequence)`, `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
Final beam scores of the generated ``sequences``.
scores (:obj:`tuple(torch.FloatTensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log
softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam
. :obj:`(max_length-1,)`-shaped tuple of :obj:`torch.FloatTensor` with each tensor of shape
:obj:`(batch_size*num_beams, config.vocab_size)`).
encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer of the decoder) of shape :obj:`(batch_size,
num_heads, sequence_length, sequence_length)`.
encoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size*num_beams, sequence_length, hidden_size)`.
decoder_attentions (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
:obj:`torch.FloatTensor` of shape :obj:`(batch_size*num_beams, num_heads, generated_length,
sequence_length)`.
cross_attentions (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_heads, generated_length, sequence_length)`.
decoder_hidden_states (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
:obj:`torch.FloatTensor` of shape :obj:`(batch_size*num_beams, generated_length, hidden_size)`.
"""
sequences: torch.LongTensor = None
sequences_scores: Optional[torch.FloatTensor] = None
scores: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
GreedySearchOutput = Union[GreedySearchEncoderDecoderOutput, GreedySearchDecoderOnlyOutput]
SampleOutput = Union[SampleEncoderDecoderOutput, SampleDecoderOnlyOutput]
BeamSearchOutput = Union[BeamSearchEncoderDecoderOutput, BeamSearchDecoderOnlyOutput]
BeamSampleOutput = Union[BeamSampleEncoderDecoderOutput, BeamSampleDecoderOnlyOutput]
class GenerationMixin:
"""
A class containing all of the functions supporting generation, to be used as a mixin in
:class:`~transformers.PreTrainedModel`.
"""
def prepare_inputs_for_generation(self, input_ids: torch.LongTensor, **kwargs) -> Dict[str, Any]:
"""
Implement in subclasses of :class:`~transformers.PreTrainedModel` for custom behavior to prepare inputs in the
generate method.
"""
return {"input_ids": input_ids}
def adjust_logits_during_generation(self, logits: torch.FloatTensor, **kwargs) -> torch.FloatTensor:
"""
Implement in subclasses of :class:`~transformers.PreTrainedModel` for custom behavior to adjust the logits in
the generate method.
"""
return logits
def _prepare_input_ids_for_generation(
self, bos_token_id: Optional[int], encoder_outputs: Optional[ModelOutput]
) -> torch.LongTensor:
if self.config.is_encoder_decoder and encoder_outputs is not None:
# make dummy input_ids with value -100, as a sanity check ensuring that they won't be used for encoding
shape = encoder_outputs.last_hidden_state.size()[:-1]
return torch.ones(shape, dtype=torch.long, device=self.device) * -100
if bos_token_id is None:
raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.")
return torch.ones((1, 1), dtype=torch.long, device=self.device) * bos_token_id
def _prepare_attention_mask_for_generation(
self, input_ids: torch.Tensor, pad_token_id: int, eos_token_id: int
) -> torch.LongTensor:
is_pad_token_in_inputs_ids = (pad_token_id is not None) and (pad_token_id in input_ids)
is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or (
(eos_token_id is not None) and (pad_token_id != eos_token_id)
)
if is_pad_token_in_inputs_ids and is_pad_token_not_equal_to_eos_token_id:
return input_ids.ne(pad_token_id).long()
return input_ids.new_ones(input_ids.shape, dtype=torch.long)
def _prepare_encoder_decoder_kwargs_for_generation(
self, input_ids: torch.LongTensor, model_kwargs
) -> Dict[str, Any]:
if "encoder_outputs" not in model_kwargs:
# retrieve encoder hidden states
encoder = self.get_encoder()
encoder_kwargs = {
argument: value
for argument, value in model_kwargs.items()
if not (argument.startswith("decoder_") or argument.startswith("cross_attn"))
}
model_kwargs["encoder_outputs"]: ModelOutput = encoder(input_ids, return_dict=True, **encoder_kwargs)
return model_kwargs
def _prepare_decoder_input_ids_for_generation(
self, input_ids: torch.LongTensor, decoder_start_token_id: int = None, bos_token_id: int = None
) -> torch.LongTensor:
decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id)
decoder_input_ids = (
torch.ones((input_ids.shape[0], 1), dtype=torch.long, device=input_ids.device) * decoder_start_token_id
)
return decoder_input_ids
def _get_pad_token_id(self, pad_token_id: int = None, eos_token_id: int = None) -> int:
if pad_token_id is None and eos_token_id is not None:
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.")
pad_token_id = eos_token_id
return pad_token_id
def _get_decoder_start_token_id(self, decoder_start_token_id: int = None, bos_token_id: int = None) -> int:
decoder_start_token_id = (
decoder_start_token_id if decoder_start_token_id is not None else self.config.decoder_start_token_id
)
bos_token_id = bos_token_id if bos_token_id is not None else self.config.bos_token_id
if decoder_start_token_id is not None:
return decoder_start_token_id
elif (
hasattr(self.config, "decoder")
and hasattr(self.config.decoder, "decoder_start_token_id")
and self.config.decoder.decoder_start_token_id is not None
):
return self.config.decoder.decoder_start_token_id
elif bos_token_id is not None:
return bos_token_id
elif (
hasattr(self.config, "decoder")
and hasattr(self.config.decoder, "bos_token_id")
and self.config.decoder.bos_token_id is not None
):
return self.config.decoder.bos_token_id
raise ValueError(
"`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation."
)
@staticmethod
def _expand_inputs_for_generation(
input_ids: torch.LongTensor,
expand_size: int = 1,
is_encoder_decoder: bool = False,
attention_mask: torch.LongTensor = None,
encoder_outputs: ModelOutput = None,
**model_kwargs,
) -> Tuple[torch.LongTensor, Dict[str, Any]]:
expanded_return_idx = (
torch.arange(input_ids.shape[0]).view(-1, 1).repeat(1, expand_size).view(-1).to(input_ids.device)
)
input_ids = input_ids.index_select(0, expanded_return_idx)
if "token_type_ids" in model_kwargs:
token_type_ids = model_kwargs["token_type_ids"]
model_kwargs["token_type_ids"] = token_type_ids.index_select(0, expanded_return_idx)
if attention_mask is not None:
model_kwargs["attention_mask"] = attention_mask.index_select(0, expanded_return_idx)
if is_encoder_decoder:
assert encoder_outputs is not None
encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.index_select(
0, expanded_return_idx.to(encoder_outputs.last_hidden_state.device)
)
model_kwargs["encoder_outputs"] = encoder_outputs
return input_ids, model_kwargs
@staticmethod
def _update_model_kwargs_for_generation(
outputs: ModelOutput, model_kwargs: Dict[str, Any], is_encoder_decoder: bool = False
) -> Dict[str, Any]:
# update past
if "past_key_values" in outputs:
model_kwargs["past"] = outputs.past_key_values
elif "mems" in outputs:
model_kwargs["past"] = outputs.mems
elif "past_buckets_states" in outputs:
model_kwargs["past"] = outputs.past_buckets_states
else:
model_kwargs["past"] = None
# update token_type_ids with last value
if "token_type_ids" in model_kwargs:
token_type_ids = model_kwargs["token_type_ids"]
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
# update attention mask
if not is_encoder_decoder:
if "attention_mask" in model_kwargs:
attention_mask = model_kwargs["attention_mask"]
model_kwargs["attention_mask"] = torch.cat(
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
)
return model_kwargs
def _reorder_cache(self, past, beam_idx):
raise NotImplementedError(
f"Make sure that a `_reorder_cache` function is correctly implemented in {self.__class__.__module__} to enable beam search for {self.__class__}"
)
def _get_logits_warper(
self, top_k: int = None, top_p: float = None, temperature: float = None, num_beams: int = None
) -> LogitsProcessorList:
"""
This class returns a :obj:`~transformers.LogitsProcessorList` list object that contains all relevant
:obj:`~transformers.LogitsWarper` instances used for multinomial sampling.
"""
# init warp parameters
top_k = top_k if top_k is not None else self.config.top_k
top_p = top_p if top_p is not None else self.config.top_p
temperature = temperature if temperature is not None else self.config.temperature
# instantiate warpers list
warpers = LogitsProcessorList()
# the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files
# all samplers can be found in `generation_utils_samplers.py`
if temperature is not None and temperature != 1.0:
warpers.append(TemperatureLogitsWarper(temperature))
if top_k is not None and top_k != 0:
warpers.append(TopKLogitsWarper(top_k=top_k, min_tokens_to_keep=(2 if num_beams > 1 else 1)))
if top_p is not None and top_p < 1.0:
warpers.append(TopPLogitsWarper(top_p=top_p, min_tokens_to_keep=(2 if num_beams > 1 else 1)))
return warpers
def _get_logits_processor(
self,
repetition_penalty: float,
no_repeat_ngram_size: int,
encoder_no_repeat_ngram_size: int,
encoder_input_ids: torch.LongTensor,
bad_words_ids: List[List[int]],
min_length: int,
max_length: int,
eos_token_id: int,
forced_bos_token_id: int,
forced_eos_token_id: int,
prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]],
num_beams: int,
num_beam_groups: int,
diversity_penalty: float,
remove_invalid_values: bool,
) -> LogitsProcessorList:
"""
This class returns a :obj:`~transformers.LogitsProcessorList` list object that contains all relevant
:obj:`~transformers.LogitsProcessor` instances used to modify the scores of the language model head.
"""
processors = LogitsProcessorList()
# init warp parameters
repetition_penalty = repetition_penalty if repetition_penalty is not None else self.config.repetition_penalty
no_repeat_ngram_size = (
no_repeat_ngram_size if no_repeat_ngram_size is not None else self.config.no_repeat_ngram_size
)
encoder_no_repeat_ngram_size = (
encoder_no_repeat_ngram_size
if encoder_no_repeat_ngram_size is not None
else self.config.encoder_no_repeat_ngram_size
)
bad_words_ids = bad_words_ids if bad_words_ids is not None else self.config.bad_words_ids
min_length = min_length if min_length is not None else self.config.min_length
eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id
diversity_penalty = diversity_penalty if diversity_penalty is not None else self.config.diversity_penalty
forced_bos_token_id = (
forced_bos_token_id if forced_bos_token_id is not None else self.config.forced_bos_token_id
)
forced_eos_token_id = (
forced_eos_token_id if forced_eos_token_id is not None else self.config.forced_eos_token_id
)
remove_invalid_values = (
remove_invalid_values if remove_invalid_values is not None else self.config.remove_invalid_values
)
# instantiate processors list
# the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files
# all samplers can be found in `generation_utils_samplers.py`
if diversity_penalty is not None and diversity_penalty > 0.0:
processors.append(
HammingDiversityLogitsProcessor(
diversity_penalty=diversity_penalty, num_beams=num_beams, num_beam_groups=num_beam_groups
)
)
if repetition_penalty is not None and repetition_penalty != 1.0:
processors.append(RepetitionPenaltyLogitsProcessor(penalty=repetition_penalty))
if no_repeat_ngram_size is not None and no_repeat_ngram_size > 0:
processors.append(NoRepeatNGramLogitsProcessor(no_repeat_ngram_size))
if encoder_no_repeat_ngram_size is not None and encoder_no_repeat_ngram_size > 0:
if self.config.is_encoder_decoder:
processors.append(EncoderNoRepeatNGramLogitsProcessor(encoder_no_repeat_ngram_size, encoder_input_ids))
else:
raise ValueError(
"It's impossible to use `encoder_no_repeat_ngram_size` with decoder-only architecture"
)
if bad_words_ids is not None:
processors.append(NoBadWordsLogitsProcessor(bad_words_ids, eos_token_id))
if min_length is not None and eos_token_id is not None and min_length > -1:
processors.append(MinLengthLogitsProcessor(min_length, eos_token_id))
if prefix_allowed_tokens_fn is not None:
processors.append(PrefixConstrainedLogitsProcessor(prefix_allowed_tokens_fn, num_beams // num_beam_groups))
if forced_bos_token_id is not None:
processors.append(ForcedBOSTokenLogitsProcessor(forced_bos_token_id))
if forced_eos_token_id is not None:
processors.append(ForcedEOSTokenLogitsProcessor(max_length, forced_eos_token_id))
if remove_invalid_values is True:
processors.append(InfNanRemoveLogitsProcessor())
return processors
def _get_stopping_criteria(
self, max_length: Optional[int], max_time: Optional[float], max_new_tokens: Optional[int], start_length: int
) -> StoppingCriteriaList:
stopping_criteria = StoppingCriteriaList()
if max_length is not None:
stopping_criteria.append(MaxLengthCriteria(max_length=max_length))
if max_time is not None:
stopping_criteria.append(MaxTimeCriteria(max_time=max_time))
if max_new_tokens is not None:
stopping_criteria.append(MaxNewTokensCriteria(start_length=start_length, max_new_tokens=max_new_tokens))
return stopping_criteria
@torch.no_grad()
def generate(
self,
input_ids: Optional[torch.LongTensor] = None,
max_length: Optional[int] = None,
min_length: Optional[int] = None,
do_sample: Optional[bool] = None,
early_stopping: Optional[bool] = None,
num_beams: Optional[int] = None,
temperature: Optional[float] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
repetition_penalty: Optional[float] = None,
bad_words_ids: Optional[Iterable[int]] = None,
bos_token_id: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
length_penalty: Optional[float] = None,
no_repeat_ngram_size: Optional[int] = None,
encoder_no_repeat_ngram_size: Optional[int] = None,
num_return_sequences: Optional[int] = None,
max_time: Optional[float] = None,
max_new_tokens: Optional[int] = None,
decoder_start_token_id: Optional[int] = None,
use_cache: Optional[bool] = None,
num_beam_groups: Optional[int] = None,
diversity_penalty: Optional[float] = None,
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,
return_dict_in_generate: Optional[bool] = None,
forced_bos_token_id: Optional[int] = None,
forced_eos_token_id: Optional[int] = None,
remove_invalid_values: Optional[bool] = None,
synced_gpus: Optional[bool] = None,
**model_kwargs,
) -> Union[GreedySearchOutput, SampleOutput, BeamSearchOutput, BeamSampleOutput, torch.LongTensor]:
r"""
Generates sequences for models with a language modeling head. The method currently supports greedy decoding,
multinomial sampling, beam-search decoding, and beam-search multinomial sampling.
Apart from :obj:`input_ids` and :obj:`attention_mask`, all the arguments below will default to the value of the
attribute of the same name inside the :class:`~transformers.PretrainedConfig` of the model. The default values
indicated are the default values of those config.
Most of these parameters are explained in more detail in `this blog post
<https://huggingface.co/blog/how-to-generate>`__.
Parameters:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
The sequence used as a prompt for the generation. If :obj:`None` the method initializes it as an empty
:obj:`torch.LongTensor` of shape :obj:`(1,)`.
max_length (:obj:`int`, `optional`, defaults to :obj:`model.config.max_length`):
The maximum length of the sequence to be generated.
max_new_tokens (:obj:`int`, `optional`, defaults to None):
The maximum numbers of tokens to generate, ignore the current number of tokens. Use either
:obj:`max_new_tokens` or :obj:`max_length` but not both, they serve the same purpose.
min_length (:obj:`int`, `optional`, defaults to 10):
The minimum length of the sequence to be generated.
do_sample (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to use sampling ; use greedy decoding otherwise.
early_stopping (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to stop the beam search when at least ``num_beams`` sentences are finished per batch or not.
num_beams (:obj:`int`, `optional`, defaults to 1):
Number of beams for beam search. 1 means no beam search.
temperature (:obj:`float`, `optional`, defaults to 1.0):
The value used to module the next token probabilities.
top_k (:obj:`int`, `optional`, defaults to 50):
The number of highest probability vocabulary tokens to keep for top-k-filtering.
top_p (:obj:`float`, `optional`, defaults to 1.0):
If set to float < 1, only the most probable tokens with probabilities that add up to :obj:`top_p` or
higher are kept for generation.
repetition_penalty (:obj:`float`, `optional`, defaults to 1.0):
The parameter for repetition penalty. 1.0 means no penalty. See `this paper
<https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
pad_token_id (:obj:`int`, `optional`):
The id of the `padding` token.
bos_token_id (:obj:`int`, `optional`):
The id of the `beginning-of-sequence` token.
eos_token_id (:obj:`int`, `optional`):
The id of the `end-of-sequence` token.
length_penalty (:obj:`float`, `optional`, defaults to 1.0):
Exponential penalty to the length. 1.0 means no penalty. Set to values < 1.0 in order to encourage the
model to generate shorter sequences, to a value > 1.0 in order to encourage the model to produce longer
sequences.
no_repeat_ngram_size (:obj:`int`, `optional`, defaults to 0):
If set to int > 0, all ngrams of that size can only occur once.
encoder_no_repeat_ngram_size (:obj:`int`, `optional`, defaults to 0):
If set to int > 0, all ngrams of that size that occur in the ``encoder_input_ids`` cannot occur in the
``decoder_input_ids``.
bad_words_ids(:obj:`List[List[int]]`, `optional`):
List of token ids that are not allowed to be generated. In order to get the tokens of the words that
should not appear in the generated text, use :obj:`tokenizer(bad_word,
add_prefix_space=True).input_ids`.
num_return_sequences(:obj:`int`, `optional`, defaults to 1):
The number of independently computed returned sequences for each element in the batch.
max_time(:obj:`float`, `optional`, defaults to None):
The maximum amount of time you allow the computation to run for in seconds. generation will still
finish the current pass after allocated time has been passed.
attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values are in ``[0, 1]``, 1 for
tokens that are not masked, and 0 for masked tokens. If not provided, will default to a tensor the same
shape as :obj:`input_ids` that masks the pad token. `What are attention masks?
<../glossary.html#attention-mask>`__
decoder_start_token_id (:obj:`int`, `optional`):
If an encoder-decoder model starts decoding with a different token than `bos`, the id of that token.
use_cache: (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not the model should use the past last key/values attentions (if applicable to the model) to
speed up decoding.
num_beam_groups (:obj:`int`, `optional`, defaults to 1):
Number of groups to divide :obj:`num_beams` into in order to ensure diversity among different groups of
beams. `this paper <https://arxiv.org/pdf/1610.02424.pdf>`__ for more details.
diversity_penalty (:obj:`float`, `optional`, defaults to 0.0):
This value is subtracted from a beam's score if it generates a token same as any beam from other group
at a particular time. Note that :obj:`diversity_penalty` is only effective if ``group beam search`` is
enabled.
prefix_allowed_tokens_fn: (:obj:`Callable[[int, torch.Tensor], List[int]]`, `optional`):
If provided, this function constraints the beam search to allowed tokens only at each step. If not
provided no constraint is applied. This function takes 2 arguments: the batch ID :obj:`batch_id` and
:obj:`input_ids`. It has to return a list with the allowed tokens for the next generation step
conditioned on the batch ID :obj:`batch_id` and the previously generated tokens :obj:`inputs_ids`. This
argument is useful for constrained generation conditioned on the prefix, as described in
`Autoregressive Entity Retrieval <https://arxiv.org/abs/2010.00904>`__.
output_attentions (:obj:`bool`, `optional`, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more details.
output_hidden_states (:obj:`bool`, `optional`, defaults to `False`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors
for more details.
output_scores (:obj:`bool`, `optional`, defaults to `False`):
Whether or not to return the prediction scores. See ``scores`` under returned tensors for more details.
return_dict_in_generate (:obj:`bool`, `optional`, defaults to `False`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
forced_bos_token_id (:obj:`int`, `optional`):
The id of the token to force as the first generated token after the :obj:`decoder_start_token_id`.
Useful for multilingual models like :doc:`mBART <../model_doc/mbart>` where the first generated token
needs to be the target language token.
forced_eos_token_id (:obj:`int`, `optional`):
The id of the token to force as the last generated token when :obj:`max_length` is reached.
remove_invalid_values (:obj:`bool`, `optional`):
Whether to remove possible `nan` and `inf` outputs of the model to prevent the generation method to
crash. Note that using ``remove_invalid_values`` can slow down generation.
synced_gpus (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
model_kwargs:
Additional model specific kwargs will be forwarded to the :obj:`forward` function of the model. If the
model is an encoder-decoder model, encoder specific kwargs should not be prefixed and decoder specific
kwargs should be prefixed with `decoder_`.
Return:
:class:`~transformers.file_utils.ModelOutput` or :obj:`torch.LongTensor`: A
:class:`~transformers.file_utils.ModelOutput` (if ``return_dict_in_generate=True`` or when
``config.return_dict_in_generate=True``) or a :obj:`torch.FloatTensor`.
If the model is `not` an encoder-decoder model (``model.config.is_encoder_decoder=False``), the
possible :class:`~transformers.file_utils.ModelOutput` types are:
- :class:`~transformers.generation_utils.GreedySearchDecoderOnlyOutput`,
- :class:`~transformers.generation_utils.SampleDecoderOnlyOutput`,
- :class:`~transformers.generation_utils.BeamSearchDecoderOnlyOutput`,
- :class:`~transformers.generation_utils.BeamSampleDecoderOnlyOutput`
If the model is an encoder-decoder model (``model.config.is_encoder_decoder=True``), the possible
:class:`~transformers.file_utils.ModelOutput` types are:
- :class:`~transformers.generation_utils.GreedySearchEncoderDecoderOutput`,
- :class:`~transformers.generation_utils.SampleEncoderDecoderOutput`,
- :class:`~transformers.generation_utils.BeamSearchEncoderDecoderOutput`,
- :class:`~transformers.generation_utils.BeamSampleEncoderDecoderOutput`
Examples::
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
>>> # do greedy decoding without providing a prompt
>>> outputs = model.generate(max_length=40)
>>> print("Generated:", tokenizer.decode(outputs[0], skip_special_tokens=True))
>>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
>>> document = (
... "at least two people were killed in a suspected bomb attack on a passenger bus "
... "in the strife-torn southern philippines on monday , the military said."
... )
>>> # encode input context
>>> input_ids = tokenizer(document, return_tensors="pt").input_ids
>>> # generate 3 independent sequences using beam search decoding (5 beams)
>>> # with T5 encoder-decoder model conditioned on short news article.
>>> outputs = model.generate(input_ids=input_ids, num_beams=5, num_return_sequences=3)
>>> print("Generated:", tokenizer.batch_decode(outputs, skip_special_tokens=True))
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
>>> input_context = "The dog"
>>> # encode input context
>>> input_ids = tokenizer(input_context, return_tensors="pt").input_ids
>>> # generate 3 candidates using sampling
>>> outputs = model.generate(input_ids=input_ids, max_length=20, num_return_sequences=3, do_sample=True)
>>> print("Generated:", tokenizer.batch_decode(outputs, skip_special_tokens=True))
>>> tokenizer = AutoTokenizer.from_pretrained("ctrl")
>>> model = AutoModelForCausalLM.from_pretrained("ctrl")
>>> # "Legal" is one of the control codes for ctrl
>>> input_context = "Legal My neighbor is"
>>> # encode input context
>>> input_ids = tokenizer(input_context, return_tensors="pt").input_ids
>>> outputs = model.generate(input_ids=input_ids, max_length=20, repetition_penalty=1.2)
>>> print("Generated:", tokenizer.decode(outputs[0], skip_special_tokens=True))
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
>>> input_context = "My cute dog"
>>> # get tokens of words that should not be generated
>>> bad_words_ids = [tokenizer(bad_word, add_prefix_space=True).input_ids for bad_word in ["idiot", "stupid", "shut up"]]
>>> # encode input context
>>> input_ids = tokenizer(input_context, return_tensors="pt").input_ids
>>> # generate sequences without allowing bad_words to be generated
>>> outputs = model.generate(input_ids=input_ids, max_length=20, do_sample=True, bad_words_ids=bad_words_ids)
>>> print("Generated:", tokenizer.decode(outputs[0], skip_special_tokens=True))
"""
# set init values
if max_length is None and max_new_tokens is None:
# Both are None, default
max_length = self.config.max_length
elif max_length is not None and max_new_tokens is not None:
# Both are set, this is odd, raise a warning
warnings.warn(
"Both `max_length` and `max_new_tokens` have been set but they serve the same purpose.", UserWarning
)
max_length = max_length if max_length is not None else self.config.max_length
num_beams = num_beams if num_beams is not None else self.config.num_beams
num_beam_groups = num_beam_groups if num_beam_groups is not None else self.config.num_beam_groups
do_sample = do_sample if do_sample is not None else self.config.do_sample
num_return_sequences = (
num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences
)
pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id
bos_token_id = bos_token_id if bos_token_id is not None else self.config.bos_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id
output_scores = output_scores if output_scores is not None else self.config.output_scores
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict_in_generate = (
return_dict_in_generate if return_dict_in_generate is not None else self.config.return_dict_in_generate
)
model_kwargs["output_attentions"] = output_attentions
model_kwargs["output_hidden_states"] = output_hidden_states
if input_ids is None and "inputs_embeds" not in model_kwargs:
# init `input_ids` with bos_token_id
input_ids = self._prepare_input_ids_for_generation(bos_token_id, model_kwargs.get("encoder_outputs"))
if model_kwargs.get("attention_mask", None) is None:
# init `attention_mask` depending on `pad_token_id`
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
input_ids, pad_token_id, eos_token_id
)
# special case if pad_token_id is not defined
if pad_token_id is None and eos_token_id is not None:
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.")
pad_token_id = eos_token_id
# Storing encoder_input_ids for logits_processor that could use them
encoder_input_ids = input_ids if self.config.is_encoder_decoder else None
if self.config.is_encoder_decoder:
# add encoder_outputs to model_kwargs
model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(input_ids, model_kwargs)
# set input_ids as decoder_input_ids
if "decoder_input_ids" in model_kwargs:
input_ids = model_kwargs.pop("decoder_input_ids")
else:
input_ids = self._prepare_decoder_input_ids_for_generation(
input_ids, decoder_start_token_id=decoder_start_token_id, bos_token_id=bos_token_id
)
if "encoder_outputs" not in model_kwargs or not isinstance(model_kwargs["encoder_outputs"], ModelOutput):
raise ValueError("Make sure that `model_kwargs` include `encoder_outputs` of type `ModelOutput`.")
if input_ids.shape[-1] >= max_length:
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
logger.warning(
f"Input length of {input_ids_string} is {input_ids.shape[-1]}, but ``max_length`` is set to {max_length}."
"This can lead to unexpected behavior. You should consider increasing ``config.max_length`` or ``max_length``."
)
# determine generation mode
is_greedy_gen_mode = (num_beams == 1) and (num_beam_groups == 1) and do_sample is False
is_sample_gen_mode = (num_beams == 1) and (num_beam_groups == 1) and do_sample is True
is_beam_gen_mode = (num_beams > 1) and (num_beam_groups == 1) and do_sample is False
is_beam_sample_gen_mode = (num_beams > 1) and (num_beam_groups == 1) and do_sample is True
is_group_beam_gen_mode = (num_beams > 1) and (num_beam_groups > 1)
if num_beam_groups > num_beams:
raise ValueError("`num_beam_groups` has to be smaller or equal to `num_beams`")
if is_group_beam_gen_mode and do_sample is True:
raise ValueError(
"Diverse beam search cannot be used in sampling mode. Make sure that `do_sample` is set to `False`."
)
# set model_kwargs
model_kwargs["use_cache"] = use_cache
# get distribution pre_processing samplers
logits_processor = self._get_logits_processor(
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
encoder_no_repeat_ngram_size=encoder_no_repeat_ngram_size,
encoder_input_ids=encoder_input_ids,
bad_words_ids=bad_words_ids,
min_length=min_length,
max_length=max_length,
eos_token_id=eos_token_id,
forced_bos_token_id=forced_bos_token_id,
forced_eos_token_id=forced_eos_token_id,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
num_beams=num_beams,
num_beam_groups=num_beam_groups,
diversity_penalty=diversity_penalty,
remove_invalid_values=remove_invalid_values,
)
cur_len = input_ids.shape[-1]
stopping_criteria = self._get_stopping_criteria(
max_length=max_length, max_time=max_time, max_new_tokens=max_new_tokens, start_length=cur_len
)
if is_greedy_gen_mode:
if num_return_sequences > 1:
raise ValueError(
f"num_return_sequences has to be 1, but is {num_return_sequences} when doing greedy search."
)
# greedy search
return self.greedy_search(
input_ids,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
output_scores=output_scores,
return_dict_in_generate=return_dict_in_generate,
synced_gpus=synced_gpus,
**model_kwargs,
)
elif is_sample_gen_mode:
# get probability distribution warper
logits_warper = self._get_logits_warper(
top_k=top_k, top_p=top_p, temperature=temperature, num_beams=num_beams
)
# expand input_ids with `num_return_sequences` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids,
expand_size=num_return_sequences,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# sample
return self.sample(
input_ids,
logits_processor=logits_processor,
logits_warper=logits_warper,
stopping_criteria=stopping_criteria,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
output_scores=output_scores,
return_dict_in_generate=return_dict_in_generate,
synced_gpus=synced_gpus,
**model_kwargs,
)
elif is_beam_gen_mode:
batch_size = input_ids.shape[0]
length_penalty = length_penalty if length_penalty is not None else self.config.length_penalty
early_stopping = early_stopping if early_stopping is not None else self.config.early_stopping
if num_return_sequences > num_beams:
raise ValueError("`num_return_sequences` has to be smaller or equal to `num_beams`.")
if stopping_criteria.max_length is None:
raise ValueError("`max_length` needs to be a stopping_criteria for now.")
beam_scorer = BeamSearchScorer(
batch_size=batch_size,
num_beams=num_beams,
device=self.device,
length_penalty=length_penalty,
do_early_stopping=early_stopping,
num_beam_hyps_to_keep=num_return_sequences,
)
# interleave with `num_beams`
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids, expand_size=num_beams, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs
)
return self.beam_search(
input_ids,
beam_scorer,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
output_scores=output_scores,
return_dict_in_generate=return_dict_in_generate,
synced_gpus=synced_gpus,
**model_kwargs,
)
elif is_beam_sample_gen_mode:
logits_warper = self._get_logits_warper(
top_k=top_k, top_p=top_p, temperature=temperature, num_beams=num_beams
)
batch_size = input_ids.shape[0] * num_return_sequences
length_penalty = length_penalty if length_penalty is not None else self.config.length_penalty
if stopping_criteria.max_length is None:
raise ValueError("`max_length` needs to be a stopping_criteria for now.")
beam_scorer = BeamSearchScorer(
batch_size=batch_size,
num_beams=num_beams,
device=self.device,
length_penalty=length_penalty,
do_early_stopping=early_stopping,
)
# interleave with `num_beams * num_return_sequences`
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids,
expand_size=num_beams * num_return_sequences,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
return self.beam_sample(
input_ids,
beam_scorer,
logits_processor=logits_processor,
logits_warper=logits_warper,
stopping_criteria=stopping_criteria,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
output_scores=output_scores,
return_dict_in_generate=return_dict_in_generate,
synced_gpus=synced_gpus,
**model_kwargs,
)
elif is_group_beam_gen_mode:
batch_size = input_ids.shape[0]
length_penalty = length_penalty if length_penalty is not None else self.config.length_penalty
early_stopping = early_stopping if early_stopping is not None else self.config.early_stopping
if num_return_sequences > num_beams:
raise ValueError("`num_return_sequences` has to be smaller or equal to `num_beams`.")
if num_beams % num_beam_groups != 0:
raise ValueError("`num_beams` should be divisible by `num_beam_groups` for group beam search.")
if stopping_criteria.max_length is None:
raise ValueError("`max_length` needs to be a stopping_criteria for now.")
diverse_beam_scorer = BeamSearchScorer(
batch_size=batch_size,
num_beams=num_beams,
max_length=stopping_criteria.max_length,
device=self.device,
length_penalty=length_penalty,
do_early_stopping=early_stopping,
num_beam_hyps_to_keep=num_return_sequences,
num_beam_groups=num_beam_groups,
)
# interleave with `num_beams`
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids, expand_size=num_beams, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs
)
return self.group_beam_search(
input_ids,
diverse_beam_scorer,
logits_processor=logits_processor,
stopping_criteria=stopping_criteria,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
output_scores=output_scores,
return_dict_in_generate=return_dict_in_generate,
synced_gpus=synced_gpus,
**model_kwargs,
)
def greedy_search(
self,
input_ids: torch.LongTensor,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,
return_dict_in_generate: Optional[bool] = None,
synced_gpus: Optional[bool] = None,
**model_kwargs,
) -> Union[GreedySearchOutput, torch.LongTensor]:
r"""
Generates sequences for models with a language modeling head using greedy decoding.
Parameters:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
The sequence used as a prompt for the generation. If :obj:`None` the method initializes it as an empty
:obj:`torch.LongTensor` of shape :obj:`(1,)`.
logits_processor (:obj:`LogitsProcessorList`, `optional`):
An instance of :class:`~transformers.LogitsProcessorList`. List of instances of class derived from
:class:`~transformers.LogitsProcessor` used to modify the prediction scores of the language modeling
head applied at each generation step.
stopping_criteria (:obj:`StoppingCriteriaList`, `optional`):
An instance of :class:`~transformers.StoppingCriteriaList`. List of instances of class derived from
:class:`~transformers.StoppingCriteria` used to tell if the generation loop should stop.
max_length (:obj:`int`, `optional`, defaults to 20):
**DEPRECATED**. Use :obj:`logits_processor` or :obj:`stopping_criteria` directly to cap the number of
generated tokens. The maximum length of the sequence to be generated.
pad_token_id (:obj:`int`, `optional`):
The id of the `padding` token.
eos_token_id (:obj:`int`, `optional`):
The id of the `end-of-sequence` token.
output_attentions (:obj:`bool`, `optional`, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more details.
output_hidden_states (:obj:`bool`, `optional`, defaults to `False`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors
for more details.
output_scores (:obj:`bool`, `optional`, defaults to `False`):
Whether or not to return the prediction scores. See ``scores`` under returned tensors for more details.
return_dict_in_generate (:obj:`bool`, `optional`, defaults to `False`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
synced_gpus (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
model_kwargs:
Additional model specific keyword arguments will be forwarded to the :obj:`forward` function of the
model. If model is an encoder-decoder model the kwargs should include :obj:`encoder_outputs`.
Return:
:class:`~transformers.generation_utils.GreedySearchDecoderOnlyOutput`,
:class:`~transformers.generation_utils.GreedySearchEncoderDecoderOutput` or obj:`torch.LongTensor`: A
:obj:`torch.LongTensor` containing the generated tokens (default behaviour) or a
:class:`~transformers.generation_utils.GreedySearchDecoderOnlyOutput` if
``model.config.is_encoder_decoder=False`` and ``return_dict_in_generate=True`` or a
:class:`~transformers.generation_utils.GreedySearchEncoderDecoderOutput` if
``model.config.is_encoder_decoder=True``.
Examples::
>>> from transformers import (
... AutoTokenizer,
... AutoModelForCausalLM,
... LogitsProcessorList,
... MinLengthLogitsProcessor,
... )
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
>>> # set pad_token_id to eos_token_id because GPT2 does not have a EOS token
>>> model.config.pad_token_id = model.config.eos_token_id
>>> input_prompt = "Today is a beautiful day, and"
>>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids
>>> # instantiate logits processors
>>> logits_processor = LogitsProcessorList([
... MinLengthLogitsProcessor(15, eos_token_id=model.config.eos_token_id),
... ])
>>> outputs = model.greedy_search(input_ids, logits_processor=logits_processor)
>>> print("Generated:", tokenizer.batch_decode(outputs, skip_special_tokens=True))
"""
# init values
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
if max_length is not None:
warnings.warn(
"`max_length` is deprecated in this function, use `stopping_criteria=StoppingCriteriaList(MaxLengthCriteria(max_length=max_length))` instead.",
UserWarning,
)
stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id
output_scores = output_scores if output_scores is not None else self.config.output_scores
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict_in_generate = (
return_dict_in_generate if return_dict_in_generate is not None else self.config.return_dict_in_generate
)
# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
if return_dict_in_generate and self.config.is_encoder_decoder:
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
encoder_hidden_states = (
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
)
# keep track of which sequences are already finished
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
cur_len = input_ids.shape[-1]
this_peer_finished = False # used by synced_gpus only
while True:
if synced_gpus:
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
# The following logic allows an early break if all peers finished generating their sequence
this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
# send 0.0 if we finished, 1.0 otherwise
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
# did all peers finish? the reduced sum will be 0.0 then
if this_peer_finished_flag.item() == 0.0:
break
# prepare model inputs
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
# forward pass to get next token
outputs = self(
**model_inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
if synced_gpus and this_peer_finished:
cur_len = cur_len + 1
continue # don't waste resources running the code we don't need
next_token_logits = outputs.logits[:, -1, :]
# Store scores, attentions and hidden_states when required
if return_dict_in_generate:
if output_scores:
scores += (next_token_logits,)
if output_attentions:
decoder_attentions += (
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
)
if self.config.is_encoder_decoder:
cross_attentions += (outputs.cross_attentions,)
if output_hidden_states:
decoder_hidden_states += (
(outputs.decoder_hidden_states,)
if self.config.is_encoder_decoder
else (outputs.hidden_states,)
)
# pre-process distribution
next_tokens_scores = logits_processor(input_ids, next_token_logits)
# argmax
next_tokens = torch.argmax(next_tokens_scores, dim=-1)
# finished sentences should have their next token be a padding token
if eos_token_id is not None:
assert pad_token_id is not None, "If eos_token_id is defined, make sure that pad_token_id is defined."
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
# update generated ids, model inputs, and length for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
)
cur_len = cur_len + 1
# if eos_token was found in one sentence, set sentence to finished
if eos_token_id is not None:
unfinished_sequences = unfinished_sequences.mul((next_tokens != eos_token_id).long())
# stop when each sentence is finished, or if we exceed the maximum length
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
if not synced_gpus:
break
else:
this_peer_finished = True
if return_dict_in_generate:
if self.config.is_encoder_decoder:
return GreedySearchEncoderDecoderOutput(
sequences=input_ids,
scores=scores,
encoder_attentions=encoder_attentions,
encoder_hidden_states=encoder_hidden_states,
decoder_attentions=decoder_attentions,
cross_attentions=cross_attentions,
decoder_hidden_states=decoder_hidden_states,
)
else:
return GreedySearchDecoderOnlyOutput(
sequences=input_ids,
scores=scores,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
)
else:
return input_ids
def sample(
self,
input_ids: torch.LongTensor,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
logits_warper: Optional[LogitsProcessorList] = None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,
return_dict_in_generate: Optional[bool] = None,
synced_gpus: Optional[bool] = None,
**model_kwargs,
) -> Union[SampleOutput, torch.LongTensor]:
r"""
Generates sequences for models with a language modeling head using multinomial sampling.
Parameters:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
The sequence used as a prompt for the generation. If :obj:`None` the method initializes it as an empty
:obj:`torch.LongTensor` of shape :obj:`(1,)`.
logits_processor (:obj:`LogitsProcessorList`, `optional`):
An instance of :class:`~transformers.LogitsProcessorList`. List of instances of class derived from
:class:`~transformers.LogitsProcessor` used to modify the prediction scores of the language modeling
head applied at each generation step.
stopping_criteria (:obj:`StoppingCriteriaList`, `optional`):
An instance of :class:`~transformers.StoppingCriteriaList`. List of instances of class derived from
:class:`~transformers.StoppingCriteria` used to tell if the generation loop should stop.
logits_warper (:obj:`LogitsProcessorList`, `optional`):
An instance of :class:`~transformers.LogitsProcessorList`. List of instances of class derived from
:class:`~transformers.LogitsWarper` used to warp the prediction score distribution of the language
modeling head applied before multinomial sampling at each generation step.
max_length (:obj:`int`, `optional`, defaults to 20):
**DEPRECATED**. Use :obj:`logits_processor` or :obj:`stopping_criteria` directly to cap the number of
generated tokens. The maximum length of the sequence to be generated.
pad_token_id (:obj:`int`, `optional`):
The id of the `padding` token.
eos_token_id (:obj:`int`, `optional`):
The id of the `end-of-sequence` token.
output_attentions (:obj:`bool`, `optional`, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more details.
output_hidden_states (:obj:`bool`, `optional`, defaults to `False`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors
for more details.
output_scores (:obj:`bool`, `optional`, defaults to `False`):
Whether or not to return the prediction scores. See ``scores`` under returned tensors for more details.
return_dict_in_generate (:obj:`bool`, `optional`, defaults to `False`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
synced_gpus (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
model_kwargs:
Additional model specific kwargs will be forwarded to the :obj:`forward` function of the model. If
model is an encoder-decoder model the kwargs should include :obj:`encoder_outputs`.
Return:
:class:`~transformers.generation_utils.SampleDecoderOnlyOutput`,
:class:`~transformers.generation_utils.SampleEncoderDecoderOutput` or obj:`torch.LongTensor`: A
:obj:`torch.LongTensor` containing the generated tokens (default behaviour) or a
:class:`~transformers.generation_utils.SampleDecoderOnlyOutput` if
``model.config.is_encoder_decoder=False`` and ``return_dict_in_generate=True`` or a
:class:`~transformers.generation_utils.SampleEncoderDecoderOutput` if
``model.config.is_encoder_decoder=True``.
Examples::
>>> from transformers import (
... AutoTokenizer,
... AutoModelForCausalLM,
... LogitsProcessorList,
... MinLengthLogitsProcessor,
... TopKLogitsWarper,
... TemperatureLogitsWarper,
... )
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
>>> # set pad_token_id to eos_token_id because GPT2 does not have a EOS token
>>> model.config.pad_token_id = model.config.eos_token_id
>>> input_prompt = "Today is a beautiful day, and"
>>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids
>>> # instantiate logits processors
>>> logits_processor = LogitsProcessorList([
... MinLengthLogitsProcessor(15, eos_token_id=model.config.eos_token_id),
... ])
>>> # instantiate logits processors
>>> logits_warper = LogitsProcessorList([
... TopKLogitsWarper(50),
... TemperatureLogitsWarper(0.7),
... ])
>>> outputs = model.sample(input_ids, logits_processor=logits_processor, logits_warper=logits_warper)
>>> print("Generated:", tokenizer.batch_decode(outputs, skip_special_tokens=True))
"""
# init values
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
if max_length is not None:
warnings.warn(
"`max_length` is deprecated in this function, use `stopping_criteria=StoppingCriteriaList(MaxLengthCriteria(max_length=max_length))` instead.",
UserWarning,
)
stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
logits_warper = logits_warper if logits_warper is not None else LogitsProcessorList()
pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id
output_scores = output_scores if output_scores is not None else self.config.output_scores
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict_in_generate = (
return_dict_in_generate if return_dict_in_generate is not None else self.config.return_dict_in_generate
)
# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
if return_dict_in_generate and self.config.is_encoder_decoder:
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
encoder_hidden_states = (
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
)
# keep track of which sequences are already finished
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
cur_len = input_ids.shape[-1]
this_peer_finished = False # used by synced_gpus only
# auto-regressive generation
while True:
if synced_gpus:
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
# The following logic allows an early break if all peers finished generating their sequence
this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
# send 0.0 if we finished, 1.0 otherwise
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
# did all peers finish? the reduced sum will be 0.0 then
if this_peer_finished_flag.item() == 0.0:
break
# prepare model inputs
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
# forward pass to get next token
outputs = self(
**model_inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
if synced_gpus and this_peer_finished:
cur_len = cur_len + 1
continue # don't waste resources running the code we don't need
next_token_logits = outputs.logits[:, -1, :]
# pre-process distribution
next_token_scores = logits_processor(input_ids, next_token_logits)
next_token_scores = logits_warper(input_ids, next_token_scores)
# Store scores, attentions and hidden_states when required
if return_dict_in_generate:
if output_scores:
scores += (next_token_scores,)
if output_attentions:
decoder_attentions += (
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
)
if self.config.is_encoder_decoder:
cross_attentions += (outputs.cross_attentions,)
if output_hidden_states:
decoder_hidden_states += (
(outputs.decoder_hidden_states,)
if self.config.is_encoder_decoder
else (outputs.hidden_states,)
)
# sample
probs = nn.functional.softmax(next_token_scores, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
# finished sentences should have their next token be a padding token
if eos_token_id is not None:
assert pad_token_id is not None, "If eos_token_id is defined, make sure that pad_token_id is defined."
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
# update generated ids, model inputs, and length for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
)
cur_len = cur_len + 1
# if eos_token was found in one sentence, set sentence to finished
if eos_token_id is not None:
unfinished_sequences = unfinished_sequences.mul((next_tokens != eos_token_id).long())
# stop when each sentence is finished, or if we exceed the maximum length
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
if not synced_gpus:
break
else:
this_peer_finished = True
if return_dict_in_generate:
if self.config.is_encoder_decoder:
return SampleEncoderDecoderOutput(
sequences=input_ids,
scores=scores,
encoder_attentions=encoder_attentions,
encoder_hidden_states=encoder_hidden_states,
decoder_attentions=decoder_attentions,
cross_attentions=cross_attentions,
decoder_hidden_states=decoder_hidden_states,
)
else:
return SampleDecoderOnlyOutput(
sequences=input_ids,
scores=scores,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
)
else:
return input_ids
def beam_search(
self,
input_ids: torch.LongTensor,
beam_scorer: BeamScorer,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,
return_dict_in_generate: Optional[bool] = None,
synced_gpus: Optional[bool] = None,
**model_kwargs,
) -> Union[BeamSearchOutput, torch.LongTensor]:
r"""
Generates sequences for models with a language modeling head using beam search decoding.
Parameters:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
The sequence used as a prompt for the generation. If :obj:`None` the method initializes it as an empty
:obj:`torch.LongTensor` of shape :obj:`(1,)`.
beam_scorer (:obj:`BeamScorer`):
An derived instance of :class:`~transformers.BeamScorer` that defines how beam hypotheses are
constructed, stored and sorted during generation. For more information, the documentation of
:class:`~transformers.BeamScorer` should be read.
logits_processor (:obj:`LogitsProcessorList`, `optional`):
An instance of :class:`~transformers.LogitsProcessorList`. List of instances of class derived from
:class:`~transformers.LogitsProcessor` used to modify the prediction scores of the language modeling
head applied at each generation step.
stopping_criteria (:obj:`StoppingCriteriaList`, `optional`):
An instance of :class:`~transformers.StoppingCriteriaList`. List of instances of class derived from
:class:`~transformers.StoppingCriteria` used to tell if the generation loop should stop.
max_length (:obj:`int`, `optional`, defaults to 20):
**DEPRECATED**. Use :obj:`logits_processor` or :obj:`stopping_criteria` directly to cap the number of
generated tokens. The maximum length of the sequence to be generated.
pad_token_id (:obj:`int`, `optional`):
The id of the `padding` token.
eos_token_id (:obj:`int`, `optional`):
The id of the `end-of-sequence` token.
output_attentions (:obj:`bool`, `optional`, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more details.
output_hidden_states (:obj:`bool`, `optional`, defaults to `False`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors
for more details.
output_scores (:obj:`bool`, `optional`, defaults to `False`):
Whether or not to return the prediction scores. See ``scores`` under returned tensors for more details.
return_dict_in_generate (:obj:`bool`, `optional`, defaults to `False`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
synced_gpus (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
model_kwargs:
Additional model specific kwargs will be forwarded to the :obj:`forward` function of the model. If
model is an encoder-decoder model the kwargs should include :obj:`encoder_outputs`.
Return:
:class:`~transformers.generation_utilsBeamSearchDecoderOnlyOutput`,
:class:`~transformers.generation_utils.BeamSearchEncoderDecoderOutput` or obj:`torch.LongTensor`: A
:obj:`torch.LongTensor` containing the generated tokens (default behaviour) or a
:class:`~transformers.generation_utils.BeamSearchDecoderOnlyOutput` if
``model.config.is_encoder_decoder=False`` and ``return_dict_in_generate=True`` or a
:class:`~transformers.generation_utils.BeamSearchEncoderDecoderOutput` if
``model.config.is_encoder_decoder=True``.
Examples::
>>> from transformers import (
... AutoTokenizer,
... AutoModelForSeq2SeqLM,
... LogitsProcessorList,
... MinLengthLogitsProcessor,
... BeamSearchScorer,
... )
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
>>> encoder_input_str = "translate English to German: How old are you?"
>>> encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids
>>> # lets run beam search using 3 beams
>>> num_beams = 3
>>> # define decoder start token ids
>>> input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
>>> input_ids = input_ids * model.config.decoder_start_token_id
>>> # add encoder_outputs to model keyword arguments
>>> model_kwargs = {
... "encoder_outputs": model.get_encoder()(encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True)
... }
>>> # instantiate beam scorer
>>> beam_scorer = BeamSearchScorer(
... batch_size=1,
... num_beams=num_beams,
... device=model.device,
... )
>>> # instantiate logits processors
>>> logits_processor = LogitsProcessorList([
... MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id),
... ])
>>> outputs = model.beam_search(input_ids, beam_scorer, logits_processor=logits_processor, **model_kwargs)
>>> print("Generated:", tokenizer.batch_decode(outputs, skip_special_tokens=True))
"""
# init values
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
if max_length is not None:
warnings.warn(
"`max_length` is deprecated in this function, use `stopping_criteria=StoppingCriteriaList(MaxLengthCriteria(max_length=max_length))` instead.",
UserWarning,
)
stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
if len(stopping_criteria) == 0:
warnings.warn("You don't have defined any stopping_criteria, this will likely loop forever", UserWarning)
pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id
output_scores = output_scores if output_scores is not None else self.config.output_scores
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict_in_generate = (
return_dict_in_generate if return_dict_in_generate is not None else self.config.return_dict_in_generate
)
# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
if return_dict_in_generate and self.config.is_encoder_decoder:
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
encoder_hidden_states = (
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
)
batch_size = len(beam_scorer._beam_hyps)
num_beams = beam_scorer.num_beams
batch_beam_size, cur_len = input_ids.shape
assert (
num_beams * batch_size == batch_beam_size
), f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
beam_scores[:, 1:] = -1e9
beam_scores = beam_scores.view((batch_size * num_beams,))
this_peer_finished = False # used by synced_gpus only
while True:
if synced_gpus:
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
# The following logic allows an early break if all peers finished generating their sequence
this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
# send 0.0 if we finished, 1.0 otherwise
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
# did all peers finish? the reduced sum will be 0.0 then
if this_peer_finished_flag.item() == 0.0:
break
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
outputs = self(
**model_inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
if synced_gpus and this_peer_finished:
cur_len = cur_len + 1
continue # don't waste resources running the code we don't need
next_token_logits = outputs.logits[:, -1, :]
# hack: adjust tokens for Marian. For Marian we have to make sure that the `pad_token_id`
# cannot be generated both before and after the `nn.functional.log_softmax` operation.
next_token_logits = self.adjust_logits_during_generation(next_token_logits, cur_len=cur_len)
next_token_scores = nn.functional.log_softmax(
next_token_logits, dim=-1
) # (batch_size * num_beams, vocab_size)
next_token_scores = logits_processor(input_ids, next_token_scores)
next_token_scores = next_token_scores + beam_scores[:, None].expand_as(next_token_scores)
# Store scores, attentions and hidden_states when required
if return_dict_in_generate:
if output_scores:
scores += (next_token_scores,)
if output_attentions:
decoder_attentions += (
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
)
if self.config.is_encoder_decoder:
cross_attentions += (outputs.cross_attentions,)
if output_hidden_states:
decoder_hidden_states += (
(outputs.decoder_hidden_states,)
if self.config.is_encoder_decoder
else (outputs.hidden_states,)
)
# reshape for beam search
vocab_size = next_token_scores.shape[-1]
next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)
next_token_scores, next_tokens = torch.topk(
next_token_scores, 2 * num_beams, dim=1, largest=True, sorted=True
)
next_indices = next_tokens // vocab_size
next_tokens = next_tokens % vocab_size
# stateless
beam_outputs = beam_scorer.process(
input_ids,
next_token_scores,
next_tokens,
next_indices,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
)
beam_scores = beam_outputs["next_beam_scores"]
beam_next_tokens = beam_outputs["next_beam_tokens"]
beam_idx = beam_outputs["next_beam_indices"]
input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
)
if model_kwargs["past"] is not None:
model_kwargs["past"] = self._reorder_cache(model_kwargs["past"], beam_idx)
# increase cur_len
cur_len = cur_len + 1
if beam_scorer.is_done or stopping_criteria(input_ids, scores):
if not synced_gpus:
break
else:
this_peer_finished = True
sequence_outputs = beam_scorer.finalize(
input_ids,
beam_scores,
next_tokens,
next_indices,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
max_length=stopping_criteria.max_length,
)
if return_dict_in_generate:
if not output_scores:
sequence_outputs["sequence_scores"] = None
if self.config.is_encoder_decoder:
return BeamSearchEncoderDecoderOutput(
sequences=sequence_outputs["sequences"],
sequences_scores=sequence_outputs["sequence_scores"],
scores=scores,
encoder_attentions=encoder_attentions,
encoder_hidden_states=encoder_hidden_states,
decoder_attentions=decoder_attentions,
cross_attentions=cross_attentions,
decoder_hidden_states=decoder_hidden_states,
)
else:
return BeamSearchDecoderOnlyOutput(
sequences=sequence_outputs["sequences"],
sequences_scores=sequence_outputs["sequence_scores"],
scores=scores,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
)
else:
return sequence_outputs["sequences"]
def beam_sample(
self,
input_ids: torch.LongTensor,
beam_scorer: BeamScorer,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
logits_warper: Optional[LogitsProcessorList] = None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,
return_dict_in_generate: Optional[bool] = None,
synced_gpus: Optional[bool] = None,
**model_kwargs,
) -> Union[BeamSampleOutput, torch.LongTensor]:
r"""
Generates sequences for models with a language modeling head using beam search with multinomial sampling.
Parameters:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
The sequence used as a prompt for the generation. If :obj:`None` the method initializes it as an empty
:obj:`torch.LongTensor` of shape :obj:`(1,)`.
beam_scorer (:obj:`BeamScorer`):
A derived instance of :class:`~transformers.BeamScorer` that defines how beam hypotheses are
constructed, stored and sorted during generation. For more information, the documentation of
:class:`~transformers.BeamScorer` should be read.
logits_processor (:obj:`LogitsProcessorList`, `optional`):
An instance of :class:`~transformers.LogitsProcessorList`. List of instances of class derived from
:class:`~transformers.LogitsProcessor` used to modify the prediction scores of the language modeling
head applied at each generation step.
stopping_criteria (:obj:`StoppingCriteriaList`, `optional`):
An instance of :class:`~transformers.StoppingCriteriaList`. List of instances of class derived from
:class:`~transformers.StoppingCriteria` used to tell if the generation loop should stop.
logits_warper (:obj:`LogitsProcessorList`, `optional`):
An instance of :class:`~transformers.LogitsProcessorList`. List of instances of class derived from
:class:`~transformers.LogitsWarper` used to warp the prediction score distribution of the language
modeling head applied before multinomial sampling at each generation step.
max_length (:obj:`int`, `optional`, defaults to 20):
**DEPRECATED**. Use :obj:`logits_processor` or :obj:`stopping_criteria` directly to cap the number of
generated tokens. The maximum length of the sequence to be generated.
pad_token_id (:obj:`int`, `optional`):
The id of the `padding` token.
eos_token_id (:obj:`int`, `optional`):
The id of the `end-of-sequence` token.
output_attentions (:obj:`bool`, `optional`, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more details.
output_hidden_states (:obj:`bool`, `optional`, defaults to `False`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors
for more details.
output_scores (:obj:`bool`, `optional`, defaults to `False`):
Whether or not to return the prediction scores. See ``scores`` under returned tensors for more details.
return_dict_in_generate (:obj:`bool`, `optional`, defaults to `False`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
synced_gpus (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
model_kwargs:
Additional model specific kwargs will be forwarded to the :obj:`forward` function of the model. If
model is an encoder-decoder model the kwargs should include :obj:`encoder_outputs`.
Return:
:class:`~transformers.generation_utils.BeamSampleDecoderOnlyOutput`,
:class:`~transformers.generation_utils.BeamSampleEncoderDecoderOutput` or obj:`torch.LongTensor`: A
:obj:`torch.LongTensor` containing the generated tokens (default behaviour) or a
:class:`~transformers.generation_utils.BeamSampleDecoderOnlyOutput` if
``model.config.is_encoder_decoder=False`` and ``return_dict_in_generate=True`` or a
:class:`~transformers.generation_utils.BeamSampleEncoderDecoderOutput` if
``model.config.is_encoder_decoder=True``.
Examples::
>>> from transformers import (
... AutoTokenizer,
... AutoModelForSeq2SeqLM,
... LogitsProcessorList,
... MinLengthLogitsProcessor,
... TopKLogitsWarper,
... TemperatureLogitsWarper,
... BeamSearchScorer,
... )
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
>>> encoder_input_str = "translate English to German: How old are you?"
>>> encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids
>>> # lets run beam search using 3 beams
>>> num_beams = 3
>>> # define decoder start token ids
>>> input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
>>> input_ids = input_ids * model.config.decoder_start_token_id
>>> # add encoder_outputs to model keyword arguments
>>> model_kwargs = {
... "encoder_outputs": model.get_encoder()(encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True)
... }
>>> # instantiate beam scorer
>>> beam_scorer = BeamSearchScorer(
... batch_size=1,
... max_length=model.config.max_length,
... num_beams=num_beams,
... device=model.device,
... )
>>> # instantiate logits processors
>>> logits_processor = LogitsProcessorList([
... MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id)
... ])
>>> # instantiate logits processors
>>> logits_warper = LogitsProcessorList([
... TopKLogitsWarper(50),
... TemperatureLogitsWarper(0.7),
... ])
>>> outputs = model.beam_sample(
... input_ids, beam_scorer, logits_processor=logits_processor, logits_warper=logits_warper, **model_kwargs
... )
>>> print("Generated:", tokenizer.batch_decode(outputs, skip_special_tokens=True))
"""
# init values
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
if max_length is not None:
warnings.warn(
"`max_length` is deprecated in this function, use `stopping_criteria=StoppingCriteriaList(MaxLengthCriteria(max_length=max_length))` instead.",
UserWarning,
)
stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id
output_scores = output_scores if output_scores is not None else self.config.output_scores
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict_in_generate = (
return_dict_in_generate if return_dict_in_generate is not None else self.config.return_dict_in_generate
)
# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
if return_dict_in_generate and self.config.is_encoder_decoder:
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
encoder_hidden_states = (
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
)
batch_size = len(beam_scorer._beam_hyps)
num_beams = beam_scorer.num_beams
batch_beam_size, cur_len = input_ids.shape
beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
beam_scores = beam_scores.view((batch_size * num_beams,))
this_peer_finished = False # used by synced_gpus only
while True:
if synced_gpus:
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
# The following logic allows an early break if all peers finished generating their sequence
this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
# send 0.0 if we finished, 1.0 otherwise
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
# did all peers finish? the reduced sum will be 0.0 then
if this_peer_finished_flag.item() == 0.0:
break
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
outputs = self(
**model_inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
if synced_gpus and this_peer_finished:
cur_len = cur_len + 1
continue # don't waste resources running the code we don't need
next_token_logits = outputs.logits[:, -1, :]
# hack: adjust tokens for Marian. For Marian we have to make sure that the `pad_token_id`
# cannot be generated both before and after the `nn.functional.log_softmax` operation.
next_token_logits = self.adjust_logits_during_generation(next_token_logits, cur_len=cur_len)
next_token_scores = nn.functional.log_softmax(
next_token_logits, dim=-1
) # (batch_size * num_beams, vocab_size)
next_token_scores = logits_processor(input_ids, next_token_scores)
next_token_scores = next_token_scores + beam_scores[:, None].expand_as(next_token_scores)
next_token_scores = logits_warper(input_ids, next_token_scores)
# Store scores, attentions and hidden_states when required
if return_dict_in_generate:
if output_scores:
scores += (next_token_scores,)
if output_attentions:
decoder_attentions += (
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
)
if self.config.is_encoder_decoder:
cross_attentions += (outputs.cross_attentions,)
if output_hidden_states:
decoder_hidden_states += (
(outputs.decoder_hidden_states,)
if self.config.is_encoder_decoder
else (outputs.hidden_states,)
)
# reshape for beam search
vocab_size = next_token_scores.shape[-1]
next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)
probs = nn.functional.softmax(next_token_scores, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=2 * num_beams)
next_token_scores = torch.gather(next_token_scores, -1, next_tokens)
next_token_scores, _indices = torch.sort(next_token_scores, descending=True, dim=1)
next_tokens = torch.gather(next_tokens, -1, _indices)
next_indices = next_tokens // vocab_size
next_tokens = next_tokens % vocab_size
# stateless
beam_outputs = beam_scorer.process(
input_ids,
next_token_scores,
next_tokens,
next_indices,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
)
beam_scores = beam_outputs["next_beam_scores"]
beam_next_tokens = beam_outputs["next_beam_tokens"]
beam_idx = beam_outputs["next_beam_indices"]
input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
)
if model_kwargs["past"] is not None:
model_kwargs["past"] = self._reorder_cache(model_kwargs["past"], beam_idx)
# increase cur_len
cur_len = cur_len + 1
if beam_scorer.is_done or stopping_criteria(input_ids, scores):
if not synced_gpus:
break
else:
this_peer_finished = True
sequence_outputs = beam_scorer.finalize(
input_ids,
beam_scores,
next_tokens,
next_indices,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
max_length=stopping_criteria.max_length,
)
if return_dict_in_generate:
if not output_scores:
sequence_outputs["sequence_scores"] = None
if self.config.is_encoder_decoder:
return BeamSampleEncoderDecoderOutput(
sequences=sequence_outputs["sequences"],
sequences_scores=sequence_outputs["sequence_scores"],
scores=scores,
encoder_attentions=encoder_attentions,
encoder_hidden_states=encoder_hidden_states,
decoder_attentions=decoder_attentions,
cross_attentions=cross_attentions,
decoder_hidden_states=decoder_hidden_states,
)
else:
return BeamSampleDecoderOnlyOutput(
sequences=sequence_outputs["sequences"],
sequences_scores=sequence_outputs["sequence_scores"],
scores=scores,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
)
else:
return sequence_outputs["sequences"]
def group_beam_search(
self,
input_ids: torch.LongTensor,
beam_scorer: BeamScorer,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,
return_dict_in_generate: Optional[bool] = None,
synced_gpus: Optional[bool] = None,
**model_kwargs,
):
r"""
Generates sequences for models with a language modeling head using beam search decoding.
Parameters:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
The sequence used as a prompt for the generation. If :obj:`None` the method initializes it as an empty
:obj:`torch.LongTensor` of shape :obj:`(1,)`.
beam_scorer (:obj:`BeamScorer`):
An derived instance of :class:`~transformers.BeamScorer` that defines how beam hypotheses are
constructed, stored and sorted during generation. For more information, the documentation of
:class:`~transformers.BeamScorer` should be read.
logits_processor (:obj:`LogitsProcessorList`, `optional`):
An instance of :class:`~transformers.LogitsProcessorList`. List of instances of class derived from
:class:`~transformers.LogitsProcessor` used to modify the prediction scores of the language modeling
head applied at each generation step.
stopping_criteria (:obj:`StoppingCriteriaList`, `optional`):
An instance of :class:`~transformers.StoppingCriteriaList`. List of instances of class derived from
:class:`~transformers.StoppingCriteria` used to tell if the generation loop should stop.
max_length (:obj:`int`, `optional`, defaults to 20):
**DEPRECATED**. Use :obj:`logits_processor` or :obj:`stopping_criteria` directly to cap the number of
generated tokens. The maximum length of the sequence to be generated.
pad_token_id (:obj:`int`, `optional`):
The id of the `padding` token.
eos_token_id (:obj:`int`, `optional`):
The id of the `end-of-sequence` token.
output_attentions (:obj:`bool`, `optional`, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more details.
output_hidden_states (:obj:`bool`, `optional`, defaults to `False`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors
for more details.
output_scores (:obj:`bool`, `optional`, defaults to `False`):
Whether or not to return the prediction scores. See ``scores`` under returned tensors for more details.
return_dict_in_generate (:obj:`bool`, `optional`, defaults to `False`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
synced_gpus (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
model_kwargs:
Additional model specific kwargs that will be forwarded to the :obj:`forward` function of the model. If
model is an encoder-decoder model the kwargs should include :obj:`encoder_outputs`.
Return:
:class:`~transformers.generation_utils.BeamSearchDecoderOnlyOutput`,
:class:`~transformers.generation_utils.BeamSearchEncoderDecoderOutput` or obj:`torch.LongTensor`: A
:obj:`torch.LongTensor` containing the generated tokens (default behaviour) or a
:class:`~transformers.generation_utils.BeamSearchDecoderOnlyOutput` if
:class:`~transformers.generation_utils.BeamSearchDecoderOnlyOutput` if
``model.config.is_encoder_decoder=False`` and ``return_dict_in_generate=True`` or a
:class:`~transformers.generation_utils.BeamSearchEncoderDecoderOutput` if
``model.config.is_encoder_decoder=True``.
Examples::
>>> from transformers import (
... AutoTokenizer,
... AutoModelForSeq2SeqLM,
... LogitsProcessorList,
... MinLengthLogitsProcessor,
... HammingDiversityLogitsProcessor,
... BeamSearchScorer,
... )
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
>>> encoder_input_str = "translate English to German: How old are you?"
>>> encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids
>>> # lets run diverse beam search using 6 beams
>>> num_beams = 6
>>> # define decoder start token ids
>>> input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
>>> input_ids = input_ids * model.config.decoder_start_token_id
>>> # add encoder_outputs to model keyword arguments
>>> model_kwargs = {
... "encoder_outputs": model.get_encoder()(encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True)
... }
>>> # instantiate beam scorer
>>> beam_scorer = BeamSearchScorer(
... batch_size=1,
... max_length=model.config.max_length,
... num_beams=num_beams,
... device=model.device,
... num_beam_groups=3
... )
>>> # instantiate logits processors
>>> logits_processor = LogitsProcessorList([
... HammingDiversityLogitsProcessor(5.5, num_beams=6, num_beam_groups=3),
... MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id),
... ])
>>> outputs = model.group_beam_search(input_ids, beam_scorer, logits_processor=logits_processor, **model_kwargs)
>>> print("Generated:", tokenizer.batch_decode(outputs, skip_special_tokens=True))
"""
# init values
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
if max_length is not None:
warnings.warn(
"`max_length` is deprecated in this function, use `stopping_criteria=StoppingCriteriaList(MaxLengthCriteria(max_length=max_length))` instead.",
UserWarning,
)
stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id
output_scores = output_scores if output_scores is not None else self.config.output_scores
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict_in_generate = (
return_dict_in_generate if return_dict_in_generate is not None else self.config.return_dict_in_generate
)
# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
if return_dict_in_generate and self.config.is_encoder_decoder:
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
encoder_hidden_states = (
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
)
batch_size = len(beam_scorer._beam_hyps)
num_beams = beam_scorer.num_beams
num_beam_groups = beam_scorer.num_beam_groups
num_sub_beams = num_beams // num_beam_groups
device = input_ids.device
batch_beam_size, cur_len = input_ids.shape
assert (
num_beams * batch_size == batch_beam_size
), f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
beam_scores = torch.full((batch_size, num_beams), -1e9, dtype=torch.float, device=device)
# initialise score of first beam of each group with 0 and the rest with 1e-9. This ensures that the beams in
# the same group don't produce same tokens everytime.
beam_scores[:, ::num_sub_beams] = 0
beam_scores = beam_scores.view((batch_size * num_beams,))
this_peer_finished = False # used by synced_gpus only
while True:
if synced_gpus:
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
# The following logic allows an early break if all peers finished generating their sequence
this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
# send 0.0 if we finished, 1.0 otherwise
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
# did all peers finish? the reduced sum will be 0.0 then
if this_peer_finished_flag.item() == 0.0:
break
# predicted tokens in cur_len step
current_tokens = torch.zeros(batch_size * num_beams, dtype=input_ids.dtype, device=device)
# indices which will form the beams in the next time step
reordering_indices = torch.zeros(batch_size * num_beams, dtype=torch.long, device=device)
# do one decoder step on all beams of all sentences in batch
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
outputs = self(
**model_inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
if synced_gpus and this_peer_finished:
cur_len = cur_len + 1
continue # don't waste resources running the code we don't need
for beam_group_idx in range(num_beam_groups):
group_start_idx = beam_group_idx * num_sub_beams
group_end_idx = min(group_start_idx + num_sub_beams, num_beams)
group_size = group_end_idx - group_start_idx
# indices of beams of current group among all sentences in batch
batch_group_indices = []
if output_scores:
processed_score = torch.zeros_like(outputs.logits[:, -1, :])
for batch_idx in range(batch_size):
batch_group_indices.extend(
[batch_idx * num_beams + idx for idx in range(group_start_idx, group_end_idx)]
)
group_input_ids = input_ids[batch_group_indices]
# select outputs of beams of current group only
next_token_logits = outputs.logits[batch_group_indices, -1, :]
# hack: adjust tokens for Marian. For Marian we have to make sure that the `pad_token_id`
# cannot be generated both before and after the `nn.functional.log_softmax` operation.
next_token_logits = self.adjust_logits_during_generation(next_token_logits, cur_len=cur_len)
next_token_scores = nn.functional.log_softmax(
next_token_logits, dim=-1
) # (batch_size * group_size, vocab_size)
vocab_size = next_token_scores.shape[-1]
next_token_scores = logits_processor(
group_input_ids, next_token_scores, current_tokens=current_tokens, beam_group_idx=beam_group_idx
)
next_token_scores = next_token_scores + beam_scores[batch_group_indices].unsqueeze(-1).expand_as(
next_token_scores
)
if output_scores:
processed_score[batch_group_indices] = next_token_scores
# reshape for beam search
next_token_scores = next_token_scores.view(batch_size, group_size * vocab_size)
next_token_scores, next_tokens = torch.topk(
next_token_scores, 2 * group_size, dim=1, largest=True, sorted=True
)
next_indices = next_tokens // vocab_size
next_tokens = next_tokens % vocab_size
# stateless
beam_outputs = beam_scorer.process(
group_input_ids,
next_token_scores,
next_tokens,
next_indices,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
)
beam_scores[batch_group_indices] = beam_outputs["next_beam_scores"]
beam_next_tokens = beam_outputs["next_beam_tokens"]
beam_idx = beam_outputs["next_beam_indices"]
input_ids[batch_group_indices] = group_input_ids[beam_idx]
group_input_ids = torch.cat([group_input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
current_tokens[batch_group_indices] = group_input_ids[:, -1]
# (beam_idx // group_size) -> batch_idx
# (beam_idx % group_size) -> offset of idx inside the group
reordering_indices[batch_group_indices] = (
num_beams * (beam_idx // group_size) + group_start_idx + (beam_idx % group_size)
)
# Store scores, attentions and hidden_states when required
if return_dict_in_generate:
if output_scores:
scores += (processed_score,)
if output_attentions:
decoder_attentions += (
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
)
if self.config.is_encoder_decoder:
cross_attentions += (outputs.cross_attentions,)
if output_hidden_states:
decoder_hidden_states += (
(outputs.decoder_hidden_states,)
if self.config.is_encoder_decoder
else (outputs.hidden_states,)
)
input_ids = torch.cat([input_ids, current_tokens.unsqueeze(-1)], dim=-1)
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
)
if model_kwargs["past"] is not None:
model_kwargs["past"] = self._reorder_cache(model_kwargs["past"], reordering_indices)
# increase cur_len
cur_len = cur_len + 1
if beam_scorer.is_done or stopping_criteria(input_ids, scores):
if not synced_gpus:
break
else:
this_peer_finished = True
sequence_outputs = beam_scorer.finalize(
input_ids,
beam_scores,
next_tokens,
next_indices,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
max_length=stopping_criteria.max_length,
)
if return_dict_in_generate:
if not output_scores:
sequence_outputs["sequence_scores"] = None
if self.config.is_encoder_decoder:
return BeamSearchEncoderDecoderOutput(
sequences=sequence_outputs["sequences"],
sequences_scores=sequence_outputs["sequence_scores"],
scores=scores,
encoder_attentions=encoder_attentions,
encoder_hidden_states=encoder_hidden_states,
decoder_attentions=decoder_attentions,
cross_attentions=cross_attentions,
decoder_hidden_states=decoder_hidden_states,
)
else:
return BeamSearchDecoderOnlyOutput(
sequences=sequence_outputs["sequences"],
sequences_scores=sequence_outputs["sequence_scores"],
scores=scores,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
)
else:
return sequence_outputs["sequences"]
def top_k_top_p_filtering(
logits: torch.FloatTensor,
top_k: int = 0,
top_p: float = 1.0,
filter_value: float = -float("Inf"),
min_tokens_to_keep: int = 1,
) -> torch.FloatTensor:
"""
Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (batch size, vocabulary size)
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
Make sure we keep at least min_tokens_to_keep per batch example in the output
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
if top_k > 0:
logits = TopKLogitsWarper(top_k=top_k, filter_value=filter_value, min_tokens_to_keep=min_tokens_to_keep)(
None, logits
)
if 0 <= top_p <= 1.0:
logits = TopPLogitsWarper(top_p=top_p, min_tokens_to_keep=min_tokens_to_keep)(None, logits)
return logits
|