File size: 91,769 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import Optional, Tuple, Union

import numpy as np
import tensorflow as tf

from .file_utils import ModelOutput
from .utils import logging


logger = logging.get_logger(__name__)


@dataclass
class TFGreedySearchDecoderOnlyOutput(ModelOutput):
    """
    Base class for outputs of decoder-only generation models using greedy search.


    Args:
        sequences (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to :obj:`max_length` or
            shorter if all batches finished early due to the :obj:`eos_token_id`.
        scores (:obj:`tuple(tf.Tensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. :obj:`(max_length-input_ids.shape[-1],)`-shaped tuple of :obj:`tf.Tensor` with
            each tensor of shape :obj:`(batch_size, config.vocab_size)`).
        attentions (:obj:`tuple(tuple(tf.Tensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            :obj:`tf.Tensor` of shape :obj:`(batch_size, num_heads, generated_length, sequence_length)`.
        hidden_states (:obj:`tuple(tuple(tf.Tensor))`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            :obj:`tf.Tensor` of shape :obj:`(batch_size, generated_length, hidden_size)`.
    """

    sequences: tf.Tensor = None
    scores: Optional[Tuple[tf.Tensor]] = None
    attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None


@dataclass
class TFGreedySearchEncoderDecoderOutput(ModelOutput):
    """
    Base class for outputs of encoder-decoder generation models using greedy search. Hidden states and attention
    weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the
    encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)


    Args:
        sequences (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to :obj:`max_length` or
            shorter if all batches finished early due to the :obj:`eos_token_id`.
        scores (:obj:`tuple(tf.Tensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. :obj:`(max_length-1,)`-shaped tuple of :obj:`tf.Tensor` with each tensor of shape
            :obj:`(batch_size, config.vocab_size)`).
        encoder_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer of the decoder) of shape :obj:`(batch_size, num_heads,
            sequence_length, sequence_length)`.
        encoder_hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape :obj:`(batch_size, sequence_length, hidden_size)`.
        decoder_attentions (:obj:`tuple(tuple(tf.Tensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            :obj:`tf.Tensor` of shape :obj:`(batch_size, num_heads, generated_length, sequence_length)`.
        cross_attentions (:obj:`tuple(tuple(tf.Tensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            :obj:`tf.Tensor` of shape :obj:`(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (:obj:`tuple(tuple(tf.Tensor))`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            :obj:`tf.Tensor` of shape :obj:`(batch_size, generated_length, hidden_size)`.
    """

    sequences: tf.Tensor = None
    scores: Optional[Tuple[tf.Tensor]] = None
    encoder_attentions: Optional[Tuple[tf.Tensor]] = None
    encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None


@dataclass
class TFSampleDecoderOnlyOutput(ModelOutput):
    """
    Base class for outputs of decoder-only generation models using sampling.


    Args:
        sequences (:obj:`tf.Tensor` of shape :obj:`(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to :obj:`max_length` or
            shorter if all batches finished early due to the :obj:`eos_token_id`.
        scores (:obj:`tuple(tf.Tensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. :obj:`(max_length-input_ids.shape[-1],)`-shaped tuple of :obj:`tf.Tensor` with
            each tensor of shape :obj:`(batch_size*num_return_sequences, config.vocab_size)`).
        attentions (:obj:`tuple(tuple(tf.Tensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            :obj:`tf.Tensor` of shape :obj:`(num_return_sequences*batch_size, num_heads, generated_length,
            sequence_length)`.
        hidden_states (:obj:`tuple(tuple(tf.Tensor))`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            :obj:`tf.Tensor` of shape :obj:`(num_return_sequences*batch_size, generated_length, hidden_size)`.
    """

    sequences: tf.Tensor = None
    scores: Optional[Tuple[tf.Tensor]] = None
    attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None


@dataclass
class TFSampleEncoderDecoderOutput(ModelOutput):
    """
    Base class for outputs of encoder-decoder generation models using sampling. Hidden states and attention weights of
    the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states
    attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)


    Args:
        sequences (:obj:`tf.Tensor` of shape :obj:`(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to :obj:`max_length` or
            shorter if all batches finished early due to the :obj:`eos_token_id`.
        scores (:obj:`tuple(tf.Tensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
            Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
            at each generation step. :obj:`(max_length-1,)`-shaped tuple of :obj:`tf.Tensor` with each tensor of shape
            :obj:`(batch_size*num_return_sequences, config.vocab_size)`).
        encoder_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer of the decoder) of shape
            :obj:`(batch_size*num_return_sequences, num_heads, sequence_length, sequence_length)`.
        encoder_hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape :obj:`(batch_size*num_return_sequences, sequence_length, hidden_size)`.
        decoder_attentions (:obj:`tuple(tuple(tf.Tensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            :obj:`tf.Tensor` of shape :obj:`(batch_size*num_return_sequences, num_heads, generated_length,
            sequence_length)`.
        cross_attentions (:obj:`tuple(tuple(tf.Tensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            :obj:`tf.Tensor` of shape :obj:`(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (:obj:`tuple(tuple(tf.Tensor))`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            :obj:`tf.Tensor` of shape :obj:`(batch_size*num_return_sequences, generated_length, hidden_size)`.
    """

    sequences: tf.Tensor = None
    scores: Optional[Tuple[tf.Tensor]] = None
    encoder_attentions: Optional[Tuple[tf.Tensor]] = None
    encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None


@dataclass
class TFBeamSearchDecoderOnlyOutput(ModelOutput):
    """
    Base class for outputs of decoder-only generation models using beam search.

    Args:
        sequences (:obj:`tf.Tensor` of shape :obj:`(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to :obj:`max_length` or
            shorter if all batches finished early due to the :obj:`eos_token_id`.
        sequences_scores (:obj:`tf.Tensor` of shape :obj:`(batch_size*num_return_sequences)`, `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
            Final beam scores of the generated ``sequences``.
        scores (:obj:`tuple(tf.Tensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
            Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log
            softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam
            . :obj:`(max_length-input_ids.shape[-1],)`-shaped tuple of :obj:`tf.Tensor` with each tensor of shape
            :obj:`(batch_size*num_beams*num_return_sequences, config.vocab_size)`).
        attentions (:obj:`tuple(tuple(tf.Tensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            :obj:`tf.Tensor` of shape :obj:`(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
        hidden_states (:obj:`tuple(tuple(tf.Tensor))`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            :obj:`tf.Tensor` of shape :obj:`(batch_size*num_beams*num_return_sequences, generated_length,
            hidden_size)`.
    """

    sequences: tf.Tensor = None
    sequences_scores: Optional[tf.Tensor] = None
    scores: Optional[Tuple[tf.Tensor]] = None
    attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None


@dataclass
class TFBeamSearchEncoderDecoderOutput(ModelOutput):
    """
    Base class for outputs of encoder-decoder generation models using beam search. Hidden states and attention weights
    of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states
    attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)

    Args:
        sequences (:obj:`tf.Tensor` of shape :obj:`(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to :obj:`max_length` or
            shorter if all batches finished early due to the :obj:`eos_token_id`.
        sequences_scores (:obj:`tf.Tensor` of shape :obj:`(batch_size*num_return_sequences)`, `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
            Final beam scores of the generated ``sequences``.
        scores (:obj:`tuple(tf.Tensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
            Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log
            softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam
            . :obj:`(max_length-1,)`-shaped tuple of :obj:`tf.Tensor` with each tensor of shape
            :obj:`(batch_size*num_beams, config.vocab_size)`).
        attentions (:obj:`tuple(tuple(tf.Tensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
        encoder_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer of the decoder) of shape :obj:`(batch_size, num_heads,
            sequence_length, sequence_length)`.
        encoder_hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape :obj:`(batch_size*num_beams*num_return_sequences, sequence_length, hidden_size)`.
        decoder_attentions (:obj:`tuple(tuple(tf.Tensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            :obj:`tf.Tensor` of shape :obj:`(batch_size*num_beams*num_return_sequences, num_heads, generated_length,
            sequence_length)`.
        cross_attentions (:obj:`tuple(tuple(tf.Tensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            :obj:`tf.Tensor` of shape :obj:`(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (:obj:`tuple(tuple(tf.Tensor))`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            :obj:`tf.Tensor` of shape :obj:`(batch_size*num_beams*num_return_sequences, generated_length,
            hidden_size)`.
    """

    sequences: tf.Tensor = None
    sequences_scores: Optional[tf.Tensor] = None
    scores: Optional[Tuple[tf.Tensor]] = None
    encoder_attentions: Optional[Tuple[tf.Tensor]] = None
    encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None


@dataclass
class TFBeamSampleDecoderOnlyOutput(ModelOutput):
    """
    Base class for outputs of decoder-only generation models using beam sample.

    Args:
        sequences (:obj:`tf.Tensor` of shape :obj:`(batch_size*num_return_sequences, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to :obj:`max_length` or
            shorter if all batches finished early due to the :obj:`eos_token_id`.
        sequences_scores (:obj:`tf.Tensor` of shape :obj:`(batch_size * num_return_sequence)`, `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
            Final beam scores of the generated ``sequences``.
        scores (:obj:`tuple(tf.Tensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
            Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log
            softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam
            . :obj:`(max_length-input_ids.shape[-1],)`-shaped tuple of :obj:`tf.Tensor` with each tensor of shape
            :obj:`(batch_size*num_beams*num_return_sequences, config.vocab_size)`).
        attentions (:obj:`tuple(tuple(tf.Tensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            :obj:`tf.Tensor` of shape :obj:`(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
        hidden_states (:obj:`tuple(tuple(tf.Tensor))`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            :obj:`tf.Tensor` of shape :obj:`(batch_size*num_beams, generated_length, hidden_size)`.
    """

    sequences: tf.Tensor = None
    sequences_scores: Optional[tf.Tensor] = None
    scores: Optional[Tuple[tf.Tensor]] = None
    attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None


@dataclass
class TFBeamSampleEncoderDecoderOutput(ModelOutput):
    """
    Base class for outputs of encoder-decoder generation models using beam sampling. Hidden states and attention
    weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the
    encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)

    Args:
        sequences (:obj:`tf.Tensor` of shape :obj:`(batch_size*num_beams, sequence_length)`):
            The generated sequences. The second dimension (sequence_length) is either equal to :obj:`max_length` or
            shorter if all batches finished early due to the :obj:`eos_token_id`.
        sequences_scores (:obj:`tf.Tensor` of shape :obj:`(batch_size * num_return_sequence)`, `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
            Final beam scores of the generated ``sequences``.
        scores (:obj:`tuple(tf.Tensor)` `optional`, returned when ``output_scores=True`` is passed or when ``config.output_scores=True``):
            Processed beam scores for each vocabulary token at each generation step. Beam scores consisting of log
            softmax scores for each vocabulary token and sum of log softmax of previously generated tokens in this beam
            . :obj:`(max_length-1,)`-shaped tuple of :obj:`tf.Tensor` with each tensor of shape
            :obj:`(batch_size*num_beams, config.vocab_size)`).
        encoder_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer of the decoder) of shape :obj:`(batch_size, num_heads,
            sequence_length, sequence_length)`.
        encoder_hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape :obj:`(batch_size*num_beams, sequence_length, hidden_size)`.
        decoder_attentions (:obj:`tuple(tuple(tf.Tensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            :obj:`tf.Tensor` of shape :obj:`(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
        cross_attentions (:obj:`tuple(tuple(tf.Tensor))`, `optional`, returned when ``output_attentions=True`` is passed or ``config.output_attentions=True``):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            :obj:`tf.Tensor` of shape :obj:`(batch_size, num_heads, generated_length, sequence_length)`.
        decoder_hidden_states (:obj:`tuple(tuple(tf.Tensor))`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
            :obj:`tf.Tensor` of shape :obj:`(batch_size*num_beams, generated_length, hidden_size)`.
    """

    sequences: tf.Tensor = None
    sequences_scores: Optional[tf.Tensor] = None
    scores: Optional[Tuple[tf.Tensor]] = None
    encoder_attentions: Optional[Tuple[tf.Tensor]] = None
    encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
    decoder_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    cross_attentions: Optional[Tuple[Tuple[tf.Tensor]]] = None
    decoder_hidden_states: Optional[Tuple[Tuple[tf.Tensor]]] = None


TFGreedySearchOutput = Union[TFGreedySearchEncoderDecoderOutput, TFGreedySearchDecoderOnlyOutput]
TFSampleOutput = Union[TFSampleEncoderDecoderOutput, TFSampleDecoderOnlyOutput]
TFBeamSearchOutput = Union[TFBeamSearchEncoderDecoderOutput, TFBeamSearchDecoderOnlyOutput]
TFBeamSampleOutput = Union[TFBeamSampleEncoderDecoderOutput, TFBeamSampleDecoderOnlyOutput]


class TFGenerationMixin:
    """
    A class containing all of the functions supporting generation, to be used as a mixin in
    :class:`~transformers.TFPreTrainedModel`.
    """

    def prepare_inputs_for_generation(self, inputs, **kwargs):
        """
        Implement in subclasses of :class:`~transformers.TFPreTrainedModel` for custom behavior to prepare inputs in
        the generate method.
        """
        return {"input_ids": inputs}

    def _use_cache(self, outputs, use_cache):
        """During generation, decide whether to pass the `past` variable to the next forward pass."""
        use_cache = getattr(self.config, "use_cache", False)
        if len(outputs) <= 1 or use_cache is False:
            return False
        if hasattr(self.config, "mem_len") and self.config.mem_len == 0:
            return False
        return True

    def generate(
        self,
        input_ids=None,
        max_length=None,
        min_length=None,
        do_sample=None,
        early_stopping=None,
        num_beams=None,
        temperature=None,
        top_k=None,
        top_p=None,
        repetition_penalty=None,
        bad_words_ids=None,
        bos_token_id=None,
        pad_token_id=None,
        eos_token_id=None,
        length_penalty=None,
        no_repeat_ngram_size=None,
        num_return_sequences=None,
        attention_mask=None,
        decoder_start_token_id=None,
        use_cache=None,
        output_scores=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict_in_generate=None,
        forced_bos_token_id=None,
        forced_eos_token_id=None,
        **model_kwargs,
    ) -> Union[TFGreedySearchOutput, TFSampleOutput, TFBeamSearchOutput, TFBeamSampleOutput, tf.Tensor]:
        r"""
        Generates sequences for models with a language modeling head. The method currently supports greedy decoding,
        beam-search decoding, sampling with temperature, sampling with top-k or nucleus sampling.

        Adapted in part from `Facebook's XLM beam search code
        <https://github.com/facebookresearch/XLM/blob/9e6f6814d17be4fe5b15f2e6c43eb2b2d76daeb4/src/model/transformer.py#L529>`__.

        Apart from :obj:`input_ids` and :obj:`attention_mask`, all the arguments below will default to the value of the
        attribute of the same name inside the :class:`~transformers.PretrainedConfig` of the model. The default values
        indicated are the default values of those config.

        Most of these parameters are explained in more detail in `this blog post
        <https://huggingface.co/blog/how-to-generate>`__.

        Parameters:

            input_ids (:obj:`tf.Tensor` of :obj:`dtype=tf.int32` and shape :obj:`(batch_size, sequence_length)`, `optional`):
                The sequence used as a prompt for the generation. If :obj:`None` the method initializes it as an empty
                :obj:`tf.Tensor` of shape :obj:`(1,)`.
            max_length (:obj:`int`, `optional`, defaults to 20):
                The maximum length of the sequence to be generated.
            min_length (:obj:`int`, `optional`, defaults to 10):
                The minimum length of the sequence to be generated.
            do_sample (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to use sampling ; use greedy decoding otherwise.
            early_stopping (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether to stop the beam search when at least ``num_beams`` sentences are finished per batch or not.
            num_beams (:obj:`int`, `optional`, defaults to 1):
                Number of beams for beam search. 1 means no beam search.
            temperature (:obj:`float`, `optional`, defaults to 1.0):
                The value used to module the next token probabilities.
            top_k (:obj:`int`, `optional`, defaults to 50):
                The number of highest probability vocabulary tokens to keep for top-k-filtering.
            top_p (:obj:`float`, `optional`, defaults to 1.0):
                If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or
                higher are kept for generation.
            repetition_penalty (:obj:`float`, `optional`, defaults to 1.0):
                The parameter for repetition penalty. 1.0 means no penalty. See `this paper
                <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
            pad_token_id (:obj:`int`, `optional`):
                The id of the `padding` token.
            bos_token_id (:obj:`int`, `optional`):
                The id of the `beginning-of-sequence` token.
            eos_token_id (:obj:`int`, `optional`):
                The id of the `end-of-sequence` token.
            length_penalty (:obj:`float`, `optional`, defaults to 1.0):
                Exponential penalty to the length. 1.0 means no penalty.

                Set to values < 1.0 in order to encourage the model to generate shorter sequences, to a value > 1.0 in
                order to encourage the model to produce longer sequences.
            no_repeat_ngram_size (:obj:`int`, `optional`, defaults to 0):
                If set to int > 0, all ngrams of that size can only occur once.
            bad_words_ids(:obj:`List[int]`, `optional`):
                List of token ids that are not allowed to be generated. In order to get the tokens of the words that
                should not appear in the generated text, use :obj:`tokenizer.encode(bad_word, add_prefix_space=True)`.
            num_return_sequences(:obj:`int`, `optional`, defaults to 1):
                The number of independently computed returned sequences for each element in the batch.
            attention_mask (:obj:`tf.Tensor` of :obj:`dtype=tf.int32` and shape :obj:`(batch_size, sequence_length)`, `optional`):
                Mask to avoid performing attention on padding token indices. Mask values are in ``[0, 1]``, 1 for
                tokens that are not masked, and 0 for masked tokens.

                If not provided, will default to a tensor the same shape as :obj:`input_ids` that masks the pad token.

                `What are attention masks? <../glossary.html#attention-mask>`__
            decoder_start_token_id (:obj:`int`, `optional`):
                If an encoder-decoder model starts decoding with a different token than `bos`, the id of that token.
            use_cache: (:obj:`bool`, `optional`, defaults to :obj:`True`):
                Whether or not the model should use the past last key/values attentions (if applicable to the model) to
                speed up decoding.
            output_attentions (:obj:`bool`, `optional`, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
                returned tensors for more details.
            output_hidden_states (:obj:`bool`, `optional`, defaults to `False`):
                Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors
                for more details.
            output_scores (:obj:`bool`, `optional`, defaults to `False`):
                Whether or not to return the prediction scores. See ``scores`` under returned tensors for more details.
            return_dict_in_generate (:obj:`bool`, `optional`, defaults to `False`):
                Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
            forced_bos_token_id (:obj:`int`, `optional`):
                The id of the token to force as the first generated token after the :obj:`decoder_start_token_id`.
                Useful for multilingual models like :doc:`mBART <../model_doc/mbart>` where the first generated token
                needs to be the target language token.
            forced_eos_token_id (:obj:`int`, `optional`):
                The id of the token to force as the last generated token when :obj:`max_length` is reached.
            model_specific_kwargs:
                Additional model specific kwargs will be forwarded to the :obj:`forward` function of the model.

        Return:
            :class:`~transformers.file_utils.ModelOutput` or :obj:`tf.Tensor`: A
            :class:`~transformers.file_utils.ModelOutput` (if ``return_dict_in_generate=True`` or when
            ``config.return_dict_in_generate=True``) or a :obj:`tf.Tensor`.

                If the model is `not` an encoder-decoder model (``model.config.is_encoder_decoder=False``), the
                possible :class:`~transformers.file_utils.ModelOutput` types are:

                    - :class:`~transformers.generation_utils.TFGreedySearchDecoderOnlyOutput`,
                    - :class:`~transformers.generation_utils.TFSampleDecoderOnlyOutput`,
                    - :class:`~transformers.generation_utils.TFBeamSearchDecoderOnlyOutput`,
                    - :class:`~transformers.generation_utils.TFBeamSampleDecoderOnlyOutput`

                If the model is an encoder-decoder model (``model.config.is_encoder_decoder=True``), the possible
                :class:`~transformers.file_utils.ModelOutput` types are:

                    - :class:`~transformers.generation_utils.TFGreedySearchEncoderDecoderOutput`,
                    - :class:`~transformers.generation_utils.TFSampleEncoderDecoderOutput`,
                    - :class:`~transformers.generation_utils.TFBeamSearchEncoderDecoderOutput`,
                    - :class:`~transformers.generation_utils.TFBeamSampleEncoderDecoderOutput`

        Examples::

            tokenizer = AutoTokenizer.from_pretrained('distilgpt2')   # Initialize tokenizer
            model = TFAutoModelWithLMHead.from_pretrained('distilgpt2')    # Download model and configuration from huggingface.co and cache.
            outputs = model.generate(max_length=40)  # do greedy decoding
            print(f'Generated: {tokenizer.decode(outputs[0], skip_special_tokens=True)}')

            tokenizer = AutoTokenizer.from_pretrained('openai-gpt')   # Initialize tokenizer
            model = TFAutoModelWithLMHead.from_pretrained('openai-gpt')    # Download model and configuration from huggingface.co and cache.
            input_context = 'The dog'
            input_ids = tokenizer.encode(input_context, return_tensors='tf')  # encode input context
            outputs = model.generate(input_ids=input_ids, num_beams=5, num_return_sequences=3, temperature=1.5)  # generate 3 independent sequences using beam search decoding (5 beams) with sampling from initial context 'The dog'
            for i in range(3): #  3 output sequences were generated
                print(f'Generated {i}: {tokenizer.decode(outputs[i], skip_special_tokens=True)}')

            tokenizer = AutoTokenizer.from_pretrained('distilgpt2')   # Initialize tokenizer
            model = TFAutoModelWithLMHead.from_pretrained('distilgpt2')    # Download model and configuration from huggingface.co and cache.
            input_context = 'The dog'
            input_ids = tokenizer.encode(input_context, return_tensors='tf')  # encode input context
            outputs = model.generate(input_ids=input_ids, max_length=40, temperature=0.7, num_return_sequences=3, do_sample=True)  # generate 3 candidates using sampling
            for i in range(3): #  3 output sequences were generated
                print(f'Generated {i}: {tokenizer.decode(outputs[i], skip_special_tokens=True)}')

            tokenizer = AutoTokenizer.from_pretrained('ctrl')   # Initialize tokenizer
            model = TFAutoModelWithLMHead.from_pretrained('ctrl')    # Download model and configuration from huggingface.co and cache.
            input_context = 'Legal My neighbor is'  # "Legal" is one of the control codes for ctrl
            input_ids = tokenizer.encode(input_context, return_tensors='tf')  # encode input context
            outputs = model.generate(input_ids=input_ids, max_length=50, temperature=0.7, repetition_penalty=1.2)  # generate sequences
            print(f'Generated: {tokenizer.decode(outputs[0], skip_special_tokens=True)}')

            tokenizer = AutoTokenizer.from_pretrained('gpt2')   # Initialize tokenizer
            model = TFAutoModelWithLMHead.from_pretrained('gpt2')    # Download model and configuration from huggingface.co and cache.
            input_context = 'My cute dog'
            bad_words_ids = [tokenizer.encode(bad_word, add_prefix_space=True) for bad_word in ['idiot', 'stupid', 'shut up']]
            input_ids = tokenizer.encode(input_context, return_tensors='tf')  # encode input context
            outputs = model.generate(input_ids=input_ids, max_length=100, do_sample=True, bad_words_ids=bad_words_ids)  # generate sequences without allowing bad_words to be generated
        """

        # We cannot generate if the model does not have a LM head
        if self.get_output_embeddings() is None:
            raise AttributeError(
                "You tried to generate sequences with a model that does not have a LM Head."
                "Please use another model class (e.g. `TFOpenAIGPTLMHeadModel`, `TFXLNetLMHeadModel`, `TFGPT2LMHeadModel`, `TFCTRLLMHeadModel`, `TFT5ForConditionalGeneration`, `TFTransfoXLLMHeadModel`)"
            )

        max_length = max_length if max_length is not None else self.config.max_length
        min_length = min_length if min_length is not None else self.config.min_length
        do_sample = do_sample if do_sample is not None else self.config.do_sample
        early_stopping = early_stopping if early_stopping is not None else self.config.early_stopping
        num_beams = num_beams if num_beams is not None else self.config.num_beams
        temperature = temperature if temperature is not None else self.config.temperature
        top_k = top_k if top_k is not None else self.config.top_k
        top_p = top_p if top_p is not None else self.config.top_p
        repetition_penalty = repetition_penalty if repetition_penalty is not None else self.config.repetition_penalty
        bos_token_id = bos_token_id if bos_token_id is not None else self.config.bos_token_id
        pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id
        length_penalty = length_penalty if length_penalty is not None else self.config.length_penalty
        no_repeat_ngram_size = (
            no_repeat_ngram_size if no_repeat_ngram_size is not None else self.config.no_repeat_ngram_size
        )
        bad_words_ids = bad_words_ids if bad_words_ids is not None else self.config.bad_words_ids
        num_return_sequences = (
            num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences
        )
        decoder_start_token_id = (
            decoder_start_token_id if decoder_start_token_id is not None else self.config.decoder_start_token_id
        )
        forced_bos_token_id = (
            forced_bos_token_id if forced_bos_token_id is not None else self.config.forced_bos_token_id
        )
        forced_eos_token_id = (
            forced_eos_token_id if forced_eos_token_id is not None else self.config.forced_eos_token_id
        )

        output_scores = output_scores if output_scores is not None else self.config.output_scores
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict_in_generate = (
            return_dict_in_generate if return_dict_in_generate is not None else self.config.return_dict_in_generate
        )

        model_kwargs["output_scores"] = output_scores
        model_kwargs["output_attentions"] = output_attentions
        model_kwargs["output_hidden_states"] = output_hidden_states
        if self.config.is_encoder_decoder:
            model_kwargs["encoder_attentions"] = None
            model_kwargs["encoder_hidden_states"] = None

        if input_ids is not None:
            batch_size = shape_list(input_ids)[0]  # overridden by the input batch_size
        else:
            batch_size = 1

        assert isinstance(max_length, int) and max_length > 0, "`max_length` should be a strictly positive integer."
        assert isinstance(min_length, int) and min_length >= 0, "`min_length` should be a positive integer."
        assert isinstance(do_sample, bool), "`do_sample` should be a boolean."
        assert isinstance(early_stopping, bool), "`early_stopping` should be a boolean."
        assert isinstance(num_beams, int) and num_beams > 0, "`num_beams` should be a strictly positive integer."
        assert temperature > 0, "`temperature` should be strictly positive."
        assert isinstance(top_k, int) and top_k >= 0, "`top_k` should be a positive integer."
        assert 0 <= top_p <= 1, "`top_p` should be between 0 and 1."
        assert repetition_penalty >= 1.0, "`repetition_penalty` should be >= 1."
        assert input_ids is not None or (
            isinstance(bos_token_id, int) and bos_token_id >= 0
        ), "If input_ids is not defined, `bos_token_id` should be a positive integer."
        assert pad_token_id is None or (
            isinstance(pad_token_id, int) and (pad_token_id >= 0)
        ), "`pad_token_id` should be a positive integer."
        assert (eos_token_id is None) or (
            isinstance(eos_token_id, int) and (eos_token_id >= 0)
        ), "`eos_token_id` should be a positive integer."
        assert length_penalty > 0, "`length_penalty` should be strictly positive."
        assert (
            isinstance(num_return_sequences, int) and num_return_sequences > 0
        ), "`num_return_sequences` should be a strictly positive integer."
        assert (
            bad_words_ids is None or isinstance(bad_words_ids, list) and isinstance(bad_words_ids[0], list)
        ), "`bad_words_ids` is either `None` or a list of lists of tokens that should not be generated"

        if input_ids is None:
            assert isinstance(bos_token_id, int) and bos_token_id >= 0, (
                "you should either supply a context to complete as `input_ids` input "
                "or a `bos_token_id` (integer >= 0) as a first token to start the generation."
            )
            input_ids = tf.fill((batch_size, 1), bos_token_id)
        else:
            assert len(shape_list(input_ids)) == 2, "Input prompt should be of shape (batch_size, sequence length)."

        # not allow to duplicate outputs when greedy decoding
        if do_sample is False:
            if num_beams == 1:
                # no_beam_search greedy generation conditions
                assert (
                    num_return_sequences == 1
                ), "Greedy decoding will always produce the same output for num_beams == 1 and num_return_sequences > 1. Please set num_return_sequences = 1"

            else:
                # beam_search greedy generation conditions
                assert (
                    num_beams >= num_return_sequences
                ), "Greedy beam search decoding cannot return more sequences than it has beams. Please set num_beams >= num_return_sequences"

        # create attention mask if necessary
        # TODO (PVP): this should later be handled by the forward fn() in each model in the future see PR 3140
        if (attention_mask is None) and (pad_token_id is not None) and (pad_token_id in input_ids.numpy()):
            attention_mask = tf.cast(tf.math.not_equal(input_ids, pad_token_id), dtype=tf.int32)
        elif attention_mask is None:
            attention_mask = tf.ones_like(input_ids)

        if pad_token_id is None and eos_token_id is not None:
            logger.warning(f"Setting `pad_token_id` to {eos_token_id} (first `eos_token_id`) to generate sequence")
            pad_token_id = eos_token_id

        # current position and vocab size
        cur_len = shape_list(input_ids)[1]  # unused
        vocab_size = self.config.vocab_size

        # set effective batch size and effective batch multiplier according to do_sample
        if do_sample:
            effective_batch_size = batch_size * num_return_sequences
            effective_batch_mult = num_return_sequences
        else:
            effective_batch_size = batch_size
            effective_batch_mult = 1

        if self.config.is_encoder_decoder:
            if decoder_start_token_id is None:
                decoder_start_token_id = bos_token_id

            assert (
                decoder_start_token_id is not None
            ), "decoder_start_token_id or bos_token_id has to be defined for encoder-decoder generation"
            assert hasattr(self, "get_encoder"), f"{self} should have a 'get_encoder' function defined"
            assert callable(self.get_encoder), f"{self.get_encoder} should be a method"

            # get encoder and store encoder outputs
            encoder = self.get_encoder()

            encoder_outputs = encoder(
                input_ids,
                attention_mask=attention_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            if return_dict_in_generate:
                if output_attentions:
                    model_kwargs["encoder_attentions"] = encoder_outputs.attentions
                if output_hidden_states:
                    model_kwargs["encoder_hidden_states"] = encoder_outputs.hidden_states

        # Expand input ids if num_beams > 1 or num_return_sequences > 1
        if num_return_sequences > 1 or num_beams > 1:
            input_ids_len = shape_list(input_ids)[-1]
            input_ids = tf.broadcast_to(
                tf.expand_dims(input_ids, 1), (batch_size, effective_batch_mult * num_beams, input_ids_len)
            )
            attention_mask = tf.broadcast_to(
                tf.expand_dims(attention_mask, 1), (batch_size, effective_batch_mult * num_beams, input_ids_len)
            )
            input_ids = tf.reshape(
                input_ids, (effective_batch_size * num_beams, input_ids_len)
            )  # shape: (batch_size * num_return_sequences * num_beams, cur_len)
            attention_mask = tf.reshape(
                attention_mask, (effective_batch_size * num_beams, input_ids_len)
            )  # shape: (batch_size * num_return_sequences * num_beams, cur_len)

        if self.config.is_encoder_decoder:

            # create empty decoder_input_ids
            input_ids = (
                tf.ones(
                    (effective_batch_size * num_beams, 1),
                    dtype=tf.int32,
                )
                * decoder_start_token_id
            )
            cur_len = 1

            assert (
                batch_size == encoder_outputs[0].shape[0]
            ), f"expected encoder_outputs[0] to have 1st dimension bs={batch_size}, got {encoder_outputs[0].shape[0]} "

            # expand batch_idx to assign correct encoder output for expanded input_ids (due to num_beams > 1 and num_return_sequences > 1)
            expanded_batch_idxs = tf.reshape(
                tf.repeat(tf.expand_dims(tf.range(batch_size), -1), repeats=num_beams * effective_batch_mult, axis=1),
                shape=(-1,),
            )
            # expand encoder_outputs
            encoder_outputs = (tf.gather(encoder_outputs[0], expanded_batch_idxs, axis=0),)
        else:
            encoder_outputs = None
            cur_len = shape_list(input_ids)[-1]

        assert (
            cur_len < max_length
        ), f"The context has {cur_len} number of tokens, but `max_length` is only {max_length}. Please make sure that `max_length` is bigger than the number of tokens, by setting either `generate(max_length=...,...)` or `config.max_length = ...`"

        if num_beams > 1:
            output = self._generate_beam_search(
                input_ids,
                cur_len=cur_len,
                max_length=max_length,
                min_length=min_length,
                do_sample=do_sample,
                early_stopping=early_stopping,
                temperature=temperature,
                top_k=top_k,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
                no_repeat_ngram_size=no_repeat_ngram_size,
                bad_words_ids=bad_words_ids,
                pad_token_id=pad_token_id,
                eos_token_id=eos_token_id,
                batch_size=effective_batch_size,
                num_return_sequences=num_return_sequences,
                length_penalty=length_penalty,
                num_beams=num_beams,
                vocab_size=vocab_size,
                encoder_outputs=encoder_outputs,
                attention_mask=attention_mask,
                use_cache=use_cache,
                forced_bos_token_id=forced_bos_token_id,
                forced_eos_token_id=forced_eos_token_id,
                return_dict_in_generate=return_dict_in_generate,
                **model_kwargs,
            )
        else:
            output = self._generate_no_beam_search(
                input_ids,
                cur_len=cur_len,
                max_length=max_length,
                min_length=min_length,
                do_sample=do_sample,
                temperature=temperature,
                top_k=top_k,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
                no_repeat_ngram_size=no_repeat_ngram_size,
                bad_words_ids=bad_words_ids,
                pad_token_id=pad_token_id,
                eos_token_id=eos_token_id,
                batch_size=effective_batch_size,
                vocab_size=vocab_size,
                encoder_outputs=encoder_outputs,
                attention_mask=attention_mask,
                use_cache=use_cache,
                return_dict_in_generate=return_dict_in_generate,
                **model_kwargs,
            )

        return output

    def _generate_no_beam_search(
        self,
        input_ids,
        cur_len,
        max_length,
        min_length,
        do_sample,
        temperature,
        top_k,
        top_p,
        repetition_penalty,
        no_repeat_ngram_size,
        bad_words_ids,
        pad_token_id,
        eos_token_id,
        batch_size,
        vocab_size,
        encoder_outputs,
        attention_mask,
        use_cache,
        return_dict_in_generate,
        **kwargs
    ) -> Union[TFGreedySearchOutput, TFSampleOutput, tf.Tensor]:
        """
        Generate sequences for each example without beam search (num_beams == 1). All returned sequences are generated
        independently.
        """

        # length of generated sentences / unfinished sentences
        unfinished_sents = tf.ones_like(input_ids[:, 0])
        sent_lengths = tf.ones_like(input_ids[:, 0]) * max_length

        past = encoder_outputs  # defined for encoder-decoder models, None for decoder-only models

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and kwargs["output_scores"]) else None
        decoder_attentions = () if (return_dict_in_generate and kwargs["output_attentions"]) else None
        cross_attentions = () if (return_dict_in_generate and kwargs["output_attentions"]) else None
        decoder_hidden_states = () if (return_dict_in_generate and kwargs["output_hidden_states"]) else None
        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if self.config.is_encoder_decoder:
            encoder_attentions = (
                kwargs["encoder_attentions"] if (return_dict_in_generate and kwargs["encoder_attentions"]) else None
            )
            encoder_hidden_states = (
                kwargs["encoder_hidden_states"]
                if (return_dict_in_generate and kwargs["encoder_hidden_states"])
                else None
            )

        while cur_len < max_length:
            model_inputs = self.prepare_inputs_for_generation(
                input_ids, past=past, attention_mask=attention_mask, use_cache=use_cache, **kwargs
            )
            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=kwargs["output_attentions"],
                output_hidden_states=kwargs["output_hidden_states"],
            )
            next_token_logits = outputs.logits[:, -1, :]  # (batch_size * num_beams, vocab_size)

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if kwargs["output_scores"]:
                    scores += (next_token_logits,)
                if kwargs["output_attentions"]:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if kwargs["output_hidden_states"]:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # if model has past, then set the past variable to speed up decoding
            if self._use_cache(outputs, use_cache):
                past = outputs[1]

            # repetition penalty from CTRL paper (https://arxiv.org/abs/1909.05858)
            if repetition_penalty != 1.0:
                next_token_logits_penalties = _create_next_token_logits_penalties(
                    input_ids, next_token_logits, repetition_penalty
                )
                next_token_logits = tf.math.multiply(next_token_logits, next_token_logits_penalties)

            if no_repeat_ngram_size > 0:
                # calculate a list of banned tokens to prevent repetitively generating the same ngrams
                # from fairseq: https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345
                banned_tokens = calc_banned_ngram_tokens(input_ids, batch_size, no_repeat_ngram_size, cur_len)
                # create banned_tokens boolean mask
                banned_tokens_indices_mask = []
                for banned_tokens_slice in banned_tokens:
                    banned_tokens_indices_mask.append(
                        [True if token in banned_tokens_slice else False for token in range(vocab_size)]
                    )

                next_token_logits = set_tensor_by_indices_to_value(
                    next_token_logits, tf.convert_to_tensor(banned_tokens_indices_mask, dtype=tf.bool), -float("inf")
                )

            if bad_words_ids is not None:
                # calculate a list of banned tokens according to bad words
                banned_tokens = calc_banned_bad_words_ids(input_ids, bad_words_ids)

                banned_tokens_indices_mask = []
                for banned_tokens_slice in banned_tokens:
                    banned_tokens_indices_mask.append(
                        [True if token in banned_tokens_slice else False for token in range(vocab_size)]
                    )

                next_token_logits = set_tensor_by_indices_to_value(
                    next_token_logits, tf.convert_to_tensor(banned_tokens_indices_mask, dtype=tf.bool), -float("inf")
                )

            # set eos token prob to zero if min_length is not reached
            if eos_token_id is not None and cur_len < min_length:
                # create eos_token_id boolean mask
                is_token_logit_eos_token = tf.convert_to_tensor(
                    [True if token is eos_token_id else False for token in range(vocab_size)], dtype=tf.bool
                )
                eos_token_indices_mask = tf.broadcast_to(is_token_logit_eos_token, [batch_size, vocab_size])

                next_token_logits = set_tensor_by_indices_to_value(
                    next_token_logits, eos_token_indices_mask, -float("inf")
                )

            if do_sample:
                # Temperature (higher temperature => more likely to sample low probability tokens)
                if temperature != 1.0:
                    next_token_logits = next_token_logits / temperature
                # Top-p/top-k filtering
                next_token_logits = tf_top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
                # Sample
                next_token = tf.squeeze(
                    tf.random.categorical(next_token_logits, dtype=tf.int32, num_samples=1), axis=1
                )
            else:
                # Greedy decoding
                next_token = tf.math.argmax(next_token_logits, axis=-1, output_type=tf.int32)

            # update generations and finished sentences
            if eos_token_id is not None:
                # pad finished sentences if eos_token_id exist
                tokens_to_add = next_token * unfinished_sents + (pad_token_id) * (1 - unfinished_sents)
            else:
                tokens_to_add = next_token

            # add token and increase length by one
            input_ids = tf.concat([input_ids, tf.expand_dims(tokens_to_add, -1)], 1)
            cur_len = cur_len + 1

            if eos_token_id is not None:
                eos_in_sents = tokens_to_add == eos_token_id
                # if sentence is unfinished and the token to add is eos, sent_lengths is filled with current length
                is_sents_unfinished_and_token_to_add_is_eos = tf.math.multiply(
                    unfinished_sents, tf.cast(eos_in_sents, tf.int32)
                )
                sent_lengths = (
                    sent_lengths * (1 - is_sents_unfinished_and_token_to_add_is_eos)
                    + cur_len * is_sents_unfinished_and_token_to_add_is_eos
                )

                # unfinished_sents is set to zero if eos in sentence
                unfinished_sents -= is_sents_unfinished_and_token_to_add_is_eos

            # stop when there is a </s> in each sentence, or if we exceed the maximum length
            if tf.math.reduce_max(unfinished_sents) == 0:
                break

            # extend attention_mask for new generated input if only decoder
            if self.config.is_encoder_decoder is False:
                attention_mask = tf.concat(
                    [attention_mask, tf.ones((shape_list(attention_mask)[0], 1), dtype=tf.int32)], axis=-1
                )

        # if there are different sentences lengths in the batch, some batches have to be padded
        min_sent_length = tf.math.reduce_min(sent_lengths)
        max_sent_length = tf.math.reduce_max(sent_lengths)
        if min_sent_length != max_sent_length:
            assert pad_token_id is not None, "`Pad_token_id` has to be defined if batches have different lengths"
            # finished sents are filled with pad_token
            padding = tf.ones([batch_size, max_sent_length.numpy()], dtype=tf.int32) * pad_token_id

            # create length masks for tf.where operation
            broad_casted_sent_lengths = tf.broadcast_to(
                tf.expand_dims(sent_lengths, -1), [batch_size, max_sent_length]
            )
            broad_casted_range = tf.transpose(
                tf.broadcast_to(tf.expand_dims(tf.range(max_sent_length), -1), [max_sent_length, batch_size])
            )

            decoded = tf.where(broad_casted_range < broad_casted_sent_lengths, input_ids, padding)
        else:
            decoded = input_ids

        if return_dict_in_generate:
            if do_sample:
                if self.config.is_encoder_decoder:
                    return TFSampleEncoderDecoderOutput(
                        sequences=decoded,
                        scores=scores,
                        encoder_attentions=encoder_attentions,
                        encoder_hidden_states=encoder_hidden_states,
                        decoder_attentions=decoder_attentions,
                        cross_attentions=cross_attentions,
                        decoder_hidden_states=decoder_hidden_states,
                    )
                else:
                    return TFSampleDecoderOnlyOutput(
                        sequences=decoded,
                        scores=scores,
                        attentions=decoder_attentions,
                        hidden_states=decoder_hidden_states,
                    )
            else:
                if self.config.is_encoder_decoder:
                    return TFGreedySearchEncoderDecoderOutput(
                        sequences=decoded,
                        scores=scores,
                        encoder_attentions=encoder_attentions,
                        encoder_hidden_states=encoder_hidden_states,
                        decoder_attentions=decoder_attentions,
                        cross_attentions=cross_attentions,
                        decoder_hidden_states=decoder_hidden_states,
                    )
                else:
                    return TFGreedySearchDecoderOnlyOutput(
                        sequences=decoded,
                        scores=scores,
                        attentions=decoder_attentions,
                        hidden_states=decoder_hidden_states,
                    )
        else:
            return decoded

    def _generate_beam_search(
        self,
        input_ids,
        cur_len,
        max_length,
        min_length,
        do_sample,
        early_stopping,
        temperature,
        top_k,
        top_p,
        repetition_penalty,
        no_repeat_ngram_size,
        bad_words_ids,
        pad_token_id,
        eos_token_id,
        batch_size,
        num_return_sequences,
        length_penalty,
        num_beams,
        vocab_size,
        encoder_outputs,
        attention_mask,
        use_cache,
        forced_bos_token_id,
        forced_eos_token_id,
        return_dict_in_generate,
        **kwargs,
    ) -> Union[TFBeamSearchOutput, TFBeamSampleOutput, tf.Tensor]:
        """Generate sequences for each example with beam search."""

        # generated hypotheses
        generated_hyps = [
            BeamHypotheses(num_beams, max_length, length_penalty, early_stopping=early_stopping)
            for _ in range(batch_size)
        ]

        # for greedy decoding it is made sure that only tokens of the first beam are considered to avoid sampling the exact same tokens three times
        if do_sample is False:
            beam_scores_begin = tf.zeros((batch_size, 1), dtype=tf.float32)
            beam_scores_end = tf.ones((batch_size, num_beams - 1), dtype=tf.float32) * (-1e9)
            beam_scores = tf.concat([beam_scores_begin, beam_scores_end], -1)
        else:
            beam_scores = tf.zeros((batch_size, num_beams), dtype=tf.float32)

        beam_scores = tf.reshape(beam_scores, (batch_size * num_beams,))

        # cache compute states
        past = encoder_outputs
        # to stay similar to torch : past = (encoder_outputs, None) if encoder_outputs is not None else None

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and kwargs["output_scores"]) else None
        decoder_attentions = () if (return_dict_in_generate and kwargs["output_attentions"]) else None
        cross_attentions = () if (return_dict_in_generate and kwargs["output_attentions"]) else None
        decoder_hidden_states = () if (return_dict_in_generate and kwargs["output_hidden_states"]) else None
        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if self.config.is_encoder_decoder:
            encoder_attentions = (
                kwargs["encoder_attentions"] if (return_dict_in_generate and kwargs["encoder_attentions"]) else None
            )
            encoder_hidden_states = (
                kwargs["encoder_hidden_states"]
                if (return_dict_in_generate and kwargs["encoder_hidden_states"])
                else None
            )

        # done sentences
        done = [False for _ in range(batch_size)]

        while cur_len < max_length:
            model_inputs = self.prepare_inputs_for_generation(
                input_ids, past=past, attention_mask=attention_mask, use_cache=use_cache, **kwargs
            )
            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=kwargs["output_attentions"],
                output_hidden_states=kwargs["output_hidden_states"],
            )
            next_token_logits = outputs.logits[:, -1, :]  # (batch_size * num_beams, vocab_size)

            # if model has past, then set the past variable to speed up decoding
            if self._use_cache(outputs, use_cache):
                past = outputs[1]

            # repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858)
            if repetition_penalty != 1.0:
                next_token_logits_penalties = _create_next_token_logits_penalties(
                    input_ids, next_token_logits, repetition_penalty
                )
                next_token_logits = tf.math.multiply(next_token_logits, next_token_logits_penalties)

            # Temperature (higher temperature => more likely to sample low probability tokens)
            if temperature != 1.0:
                next_token_logits = next_token_logits / temperature

            if self.config.is_encoder_decoder and do_sample is False:
                next_token_logits = self.adjust_logits_during_generation(
                    next_token_logits,
                    cur_len=cur_len,
                    max_length=max_length,
                    forced_bos_token_id=forced_bos_token_id,
                    forced_eos_token_id=forced_eos_token_id,
                )
            #             calculate log softmax score
            scores = tf.nn.log_softmax(next_token_logits, axis=-1)  # (batch_size * num_beams, vocab_size)

            # set eos token prob to zero if min_length is not reached
            if eos_token_id is not None and cur_len < min_length:
                # create eos_token_id boolean mask
                num_batch_hypotheses = batch_size * num_beams

                is_token_logit_eos_token = tf.convert_to_tensor(
                    [True if token is eos_token_id else False for token in range(vocab_size)], dtype=tf.bool
                )
                eos_token_indices_mask = tf.broadcast_to(is_token_logit_eos_token, [num_batch_hypotheses, vocab_size])

                scores = set_tensor_by_indices_to_value(scores, eos_token_indices_mask, -float("inf"))

            if no_repeat_ngram_size > 0:
                # calculate a list of banned tokens to prevent repetitively generating the same ngrams
                # from fairseq: https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345
                num_batch_hypotheses = batch_size * num_beams
                banned_tokens = calc_banned_ngram_tokens(
                    input_ids, num_batch_hypotheses, no_repeat_ngram_size, cur_len
                )
                # create banned_tokens boolean mask
                banned_tokens_indices_mask = []
                for banned_tokens_slice in banned_tokens:
                    banned_tokens_indices_mask.append(
                        [True if token in banned_tokens_slice else False for token in range(vocab_size)]
                    )

                scores = set_tensor_by_indices_to_value(
                    scores, tf.convert_to_tensor(banned_tokens_indices_mask, dtype=tf.bool), -float("inf")
                )

            if bad_words_ids is not None:
                # calculate a list of banned tokens according to bad words
                banned_tokens = calc_banned_bad_words_ids(input_ids, bad_words_ids)

                banned_tokens_indices_mask = []
                for banned_tokens_slice in banned_tokens:
                    banned_tokens_indices_mask.append(
                        [True if token in banned_tokens_slice else False for token in range(vocab_size)]
                    )

                scores = set_tensor_by_indices_to_value(
                    scores, tf.convert_to_tensor(banned_tokens_indices_mask, dtype=tf.bool), -float("inf")
                )

            assert shape_list(scores) == [batch_size * num_beams, vocab_size]

            if do_sample:
                _scores = scores + tf.broadcast_to(
                    beam_scores[:, None], (batch_size * num_beams, vocab_size)
                )  # (batch_size * num_beams, vocab_size)

                # Top-p/top-k filtering
                _scores = tf_top_k_top_p_filtering(
                    _scores, top_k=top_k, top_p=top_p, min_tokens_to_keep=2
                )  # (batch_size * num_beams, vocab_size)
                # Sample 2 next tokens for each beam (so we have some spare tokens and match output of greedy beam search)
                _scores = tf.reshape(_scores, (batch_size, num_beams * vocab_size))

                next_tokens = sample_without_replacement(
                    _scores, num_samples=2 * num_beams
                )  # (batch_size, 2 * num_beams)
                # Compute next scores
                next_scores = tf.gather(_scores, next_tokens, batch_dims=1)  # (batch_size, 2 * num_beams)

                # sort the sampled vector to make sure that the first num_beams samples are the best
                next_scores_indices = tf.argsort(next_scores, direction="DESCENDING", axis=1)
                next_scores = tf.gather(next_scores, next_scores_indices, batch_dims=1)  # (batch_size, num_beams * 2)
                next_tokens = tf.gather(next_tokens, next_scores_indices, batch_dims=1)  # (batch_size, num_beams * 2)
            else:
                # Add the log prob of the new beams to the log prob of the beginning of the sequence (sum of logs == log of the product)
                next_scores = scores + tf.broadcast_to(
                    beam_scores[:, None], (batch_size * num_beams, vocab_size)
                )  # (batch_size * num_beams, vocab_size)

                # re-organize to group the beam together (we are keeping top hypothesis across beams)
                next_scores = tf.reshape(
                    next_scores, (batch_size, num_beams * vocab_size)
                )  # (batch_size, num_beams * vocab_size)

                next_scores, next_tokens = tf.math.top_k(next_scores, k=2 * num_beams, sorted=True)

            assert shape_list(next_scores) == shape_list(next_tokens) == [batch_size, 2 * num_beams]

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if kwargs["output_scores"]:
                    scores += (next_token_logits,)
                if kwargs["output_attentions"]:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if kwargs["output_hidden_states"]:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # next batch beam content
            next_batch_beam = []

            # for each sentence
            for batch_idx in range(batch_size):

                # if we are done with this sentence
                if done[batch_idx]:
                    assert (
                        len(generated_hyps[batch_idx]) >= num_beams
                    ), f"Batch can only be done if at least {num_beams} beams have been generated."
                    assert (
                        eos_token_id is not None and pad_token_id is not None
                    ), "generated beams >= num_beams -> eos_token_id and pad_token have to be defined"
                    next_batch_beam.extend([(0, pad_token_id, 0)] * num_beams)  # pad the batch
                    continue

                # next sentence beam content
                next_sent_beam = []

                # next tokens for this sentence
                for beam_token_rank, (beam_token_id, beam_token_score) in enumerate(
                    zip(next_tokens[batch_idx], next_scores[batch_idx])
                ):
                    # get beam and token IDs
                    beam_id = beam_token_id // vocab_size
                    token_id = beam_token_id % vocab_size

                    effective_beam_id = batch_idx * num_beams + beam_id
                    # add to generated hypotheses if end of sentence or last iteration
                    if (eos_token_id is not None) and (token_id.numpy() == eos_token_id):
                        # if beam_token does not belong to top num_beams tokens, it should not be added
                        is_beam_token_worse_than_top_num_beams = beam_token_rank >= num_beams
                        if is_beam_token_worse_than_top_num_beams:
                            continue
                        generated_hyps[batch_idx].add(
                            tf.identity(input_ids[effective_beam_id]), beam_token_score.numpy()
                        )
                    else:
                        # add next predicted token if it is not eos_token
                        next_sent_beam.append((beam_token_score, token_id, effective_beam_id))

                    # the beam for next step is full
                    if len(next_sent_beam) == num_beams:
                        break

                # Check if we are done so that we can save a pad step if all(done)
                done[batch_idx] = done[batch_idx] or generated_hyps[batch_idx].is_done(
                    tf.reduce_max(next_scores[batch_idx]).numpy(), cur_len
                )

                # update next beam content
                assert len(next_sent_beam) == num_beams, "Beam should always be full"
                next_batch_beam.extend(next_sent_beam)
                assert len(next_batch_beam) == num_beams * (batch_idx + 1)

            # stop when we are done with each sentence
            if all(done):
                break

            # sanity check / prepare next batch
            assert len(next_batch_beam) == batch_size * num_beams
            beam_scores = tf.convert_to_tensor([x[0] for x in next_batch_beam], dtype=tf.float32)
            beam_tokens = tf.convert_to_tensor([x[1] for x in next_batch_beam], dtype=tf.int32)
            beam_idx = tf.convert_to_tensor([x[2] for x in next_batch_beam], dtype=tf.int32)

            # re-order batch and update current length
            input_ids = tf.stack([tf.identity(input_ids[x, :]) for x in beam_idx])
            input_ids = tf.concat([input_ids, tf.expand_dims(beam_tokens, 1)], axis=-1)
            cur_len = cur_len + 1

            # re-order internal states
            if past is not None:
                past = self._reorder_cache(past, beam_idx)

            # extend attention_mask for new generated input if only decoder
            if self.config.is_encoder_decoder is False:
                attention_mask = tf.concat(
                    [attention_mask, tf.ones((shape_list(attention_mask)[0], 1), dtype=tf.int32)], axis=-1
                )

        # finalize all open beam hypotheses and end to generated hypotheses
        for batch_idx in range(batch_size):
            # Add all open beam hypothesis to generated_hyps
            if done[batch_idx]:
                continue
            # test that beam scores match previously calculated scores if not eos and batch_idx not done
            if eos_token_id is not None and all(
                (token_id % vocab_size).numpy().item() != eos_token_id for token_id in next_tokens[batch_idx]
            ):
                if not tf.reduce_all(
                    next_scores[batch_idx, :num_beams] == tf.reshape(beam_scores, (batch_size, num_beams))[batch_idx]
                ):
                    raise ValueError(
                        f"If batch_idx is not done, final next scores: {next_scores[:, :num_beams][batch_idx]} have "
                        "to equal to accumulated beam_scores: "
                        f"{tf.reshape(beam_scores, (batch_size, num_beams))[batch_idx]}"
                    )
            # need to add best num_beams hypotheses to generated hyps
            for beam_id in range(num_beams):
                effective_beam_id = batch_idx * num_beams + beam_id
                final_score = beam_scores[effective_beam_id].numpy().item()
                final_tokens = input_ids[effective_beam_id]
                generated_hyps[batch_idx].add(final_tokens, final_score)

        # depending on whether greedy generation is wanted or not define different output_batch_size and output_num_return_sequences_per_batch
        output_batch_size = batch_size if do_sample else batch_size * num_return_sequences
        output_num_return_sequences_per_batch = 1 if do_sample else num_return_sequences

        # select the best hypotheses
        sent_lengths_list = []
        best = []

        # retrieve best hypotheses
        for i, hypotheses in enumerate(generated_hyps):
            sorted_hyps = sorted(hypotheses.beams, key=lambda x: x[0])
            for j in range(output_num_return_sequences_per_batch):
                best_hyp = sorted_hyps.pop()[1]
                sent_lengths_list.append(len(best_hyp))
                best.append(best_hyp)
        assert output_batch_size == len(
            best
        ), f"Output batch size {output_batch_size} must match output beam hypotheses {len(best)}"

        sent_lengths = tf.convert_to_tensor(sent_lengths_list, dtype=tf.int32)

        # shorter batches are filled with pad_token
        if tf.reduce_min(sent_lengths).numpy() != tf.reduce_max(sent_lengths).numpy():
            assert pad_token_id is not None, "`Pad_token_id` has to be defined"
            sent_max_len = min(tf.reduce_max(sent_lengths).numpy() + 1, max_length)
            decoded_list = []

            # fill with hypothesis and eos_token_id if necessary
            for i, hypo in enumerate(best):
                assert sent_lengths[i] == shape_list(hypo)[0]
                # if sent_length is max_len do not pad
                if sent_lengths[i] == sent_max_len:
                    decoded_slice = hypo
                else:
                    # else pad to sent_max_len
                    num_pad_tokens = sent_max_len - sent_lengths[i]
                    padding = pad_token_id * tf.ones((num_pad_tokens,), dtype=tf.int32)
                    decoded_slice = tf.concat([hypo, padding], axis=-1)

                    # finish sentence with EOS token
                    if sent_lengths[i] < max_length:
                        decoded_slice = tf.where(
                            tf.range(sent_max_len, dtype=tf.int32) == sent_lengths[i],
                            eos_token_id * tf.ones((sent_max_len,), dtype=tf.int32),
                            decoded_slice,
                        )
                # add to list
                decoded_list.append(decoded_slice)

            decoded = tf.stack(decoded_list)
        else:
            # none of the hypotheses have an eos_token
            assert (len(hypo) == max_length for hypo in best)
            decoded = tf.stack(best)

        if return_dict_in_generate:
            if do_sample and self.config.is_encoder_decoder:
                return TFBeamSampleEncoderDecoderOutput(
                    sequences=decoded,
                    scores=scores,
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
                )
            elif do_sample and not self.config.is_encoder_decoder:
                return TFBeamSampleDecoderOnlyOutput(
                    sequences=decoded,
                    scores=scores,
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
                )
            elif self.config.is_encoder_decoder:
                return TFBeamSearchEncoderDecoderOutput(
                    sequences=decoded,
                    scores=scores,
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
                )
            else:
                return TFBeamSearchDecoderOnlyOutput(
                    sequences=decoded,
                    scores=scores,
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
                )
        else:
            return decoded

    @staticmethod
    def _reorder_cache(past, beam_idx):
        return tuple(tf.gather(layer_past, beam_idx, axis=1) for layer_past in past)

    def adjust_logits_during_generation(
        self, logits, cur_len, max_length, forced_bos_token_id, forced_eos_token_id, **kwargs
    ):
        """
        Implement in subclasses of :class:`~transformers.PreTrainedModel` for custom behavior to adjust the logits in
        the generate method.
        """
        if cur_len == 1 and forced_bos_token_id is not None:
            vocab_range = tf.constant(range(self.config.vocab_size))
            return tf.where(vocab_range != forced_bos_token_id, -1e8, logits)
        elif cur_len == max_length - 1 and forced_eos_token_id is not None:
            vocab_range = tf.constant(range(self.config.vocab_size))
            return tf.where(vocab_range != forced_eos_token_id, -1e8, logits)
        else:
            return logits


def _create_next_token_logits_penalties(input_ids, logits, repetition_penalty):
    # create logit penalties for already seen input_ids
    token_penalties = np.ones(shape_list(logits))
    prev_input_ids = [np.unique(input_id) for input_id in input_ids.numpy()]
    for i, prev_input_id in enumerate(prev_input_ids):
        logit_penalized = logits[i].numpy()[prev_input_id]
        logit_penalties = np.zeros(logit_penalized.shape)
        # if previous logit score is < 0 then multiply repetition penalty else divide
        logit_penalties[logit_penalized < 0] = repetition_penalty
        logit_penalties[logit_penalized > 0] = 1 / repetition_penalty
        np.put(token_penalties[i], prev_input_id, logit_penalties)
    return tf.convert_to_tensor(token_penalties, dtype=tf.float32)


def calc_banned_ngram_tokens(prev_input_ids, num_hypos, no_repeat_ngram_size, cur_len):
    # Copied from fairseq for no_repeat_ngram in beam_search
    if cur_len + 1 < no_repeat_ngram_size:
        # return no banned tokens if we haven't generated no_repeat_ngram_size tokens yet
        return [[] for _ in range(num_hypos)]
    generated_ngrams = [{} for _ in range(num_hypos)]
    for idx in range(num_hypos):
        gen_tokens = prev_input_ids[idx].numpy().tolist()
        generated_ngram = generated_ngrams[idx]
        for ngram in zip(*[gen_tokens[i:] for i in range(no_repeat_ngram_size)]):
            prev_ngram_tuple = tuple(ngram[:-1])
            generated_ngram[prev_ngram_tuple] = generated_ngram.get(prev_ngram_tuple, []) + [ngram[-1]]

    def _get_generated_ngrams(hypo_idx):
        # Before decoding the next token, prevent decoding of ngrams that have already appeared
        start_idx = cur_len + 1 - no_repeat_ngram_size
        ngram_idx = tuple(prev_input_ids[hypo_idx, start_idx:cur_len].numpy().tolist())
        return generated_ngrams[hypo_idx].get(ngram_idx, [])

    banned_tokens = [_get_generated_ngrams(hypo_idx) for hypo_idx in range(num_hypos)]
    return banned_tokens


def calc_banned_bad_words_ids(prev_input_ids, bad_words_ids):
    banned_tokens = []

    def _tokens_match(prev_tokens, tokens):
        if len(tokens) == 0:
            # if bad word tokens is just one token always ban it
            return True
        if len(tokens) > len(prev_tokens):
            # if bad word tokens are longer than prev tokens they can't be equal
            return False

        if prev_tokens[-len(tokens) :] == tokens:
            # if tokens match
            return True
        else:
            return False

    for prev_input_ids_slice in prev_input_ids:
        banned_tokens_slice = []

        for banned_token_seq in bad_words_ids:
            assert (
                len(banned_token_seq) > 0
            ), f"Banned words token sequences { bad_words_ids} cannot have an empty list"

            if _tokens_match(prev_input_ids_slice.numpy().tolist(), banned_token_seq[:-1]) is False:
                # if tokens do not match continue
                continue

            banned_tokens_slice.append(banned_token_seq[-1])

        banned_tokens.append(banned_tokens_slice)

    return banned_tokens


def tf_top_k_top_p_filtering(logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1):
    """
    Filter a distribution of logits using top-k and/or nucleus (top-p) filtering

    Args:
        logits: logits distribution shape (batch size, vocabulary size)
        if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
        if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
            Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
        Make sure we keep at least min_tokens_to_keep per batch example in the output
    From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
    """
    logits_shape = shape_list(logits)

    if top_k > 0:
        top_k = min(max(top_k, min_tokens_to_keep), logits_shape[-1])  # Safety check
        # Remove all tokens with a probability less than the last token of the top-k
        indices_to_remove = logits < tf.math.top_k(logits, k=top_k)[0][..., -1, None]
        logits = set_tensor_by_indices_to_value(logits, indices_to_remove, filter_value)

    if top_p < 1.0:
        sorted_indices = tf.argsort(logits, direction="DESCENDING")
        sorted_logits = tf.gather(
            logits, sorted_indices, axis=-1, batch_dims=1
        )  # expects logits to be of dim (batch_size, vocab_size)

        cumulative_probs = tf.math.cumsum(tf.nn.softmax(sorted_logits, axis=-1), axis=-1)

        # Remove tokens with cumulative probability above the threshold (token with 0 are kept)
        sorted_indices_to_remove = cumulative_probs > top_p

        if min_tokens_to_keep > 1:
            # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
            sorted_indices_to_remove = tf.concat(
                [
                    tf.zeros_like(sorted_indices_to_remove[:, :min_tokens_to_keep]),
                    sorted_indices_to_remove[:, min_tokens_to_keep:],
                ],
                -1,
            )

        # Shift the indices to the right to keep also the first token above the threshold
        sorted_indices_to_remove = tf.concat(
            [tf.zeros_like(sorted_indices_to_remove[:, :1]), sorted_indices_to_remove[:, :-1]],
            -1,
        )
        # scatter sorted tensors to original indexing
        indices_to_remove = scatter_values_on_batch_indices(sorted_indices_to_remove, sorted_indices)
        logits = set_tensor_by_indices_to_value(logits, indices_to_remove, filter_value)
    return logits


def scatter_values_on_batch_indices(values, batch_indices):
    shape = shape_list(batch_indices)
    # broadcast batch dim to shape
    broad_casted_batch_dims = tf.reshape(tf.broadcast_to(tf.expand_dims(tf.range(shape[0]), axis=-1), shape), [1, -1])
    # transform batch_indices to pair_indices
    pair_indices = tf.transpose(tf.concat([broad_casted_batch_dims, tf.reshape(batch_indices, [1, -1])], 0))
    # scatter values to pair indices
    return tf.scatter_nd(pair_indices, tf.reshape(values, [-1]), shape)


def set_tensor_by_indices_to_value(tensor, indices, value):
    # create value_tensor since tensor value assignment is not possible in TF
    value_tensor = tf.zeros_like(tensor) + value
    return tf.where(indices, value_tensor, tensor)


def sample_without_replacement(logits, num_samples):
    """
    categorical sampling without replacement is currently not implemented the gumbel-max trick will do for now see
    https://github.com/tensorflow/tensorflow/issues/9260 for more info
    """
    z = -tf.math.log(tf.random.uniform(shape_list(logits), 0, 1))
    _, indices = tf.nn.top_k(logits + z, num_samples)
    return indices


def shape_list(x):
    """Deal with dynamic shape in tensorflow cleanly."""
    static = x.shape.as_list()
    dynamic = tf.shape(x)
    return [dynamic[i] if s is None else s for i, s in enumerate(static)]


class BeamHypotheses(object):
    def __init__(self, num_beams, max_length, length_penalty, early_stopping):
        """
        Initialize n-best list of hypotheses.
        """
        self.max_length = max_length - 1  # ignoring bos_token
        self.length_penalty = length_penalty
        self.early_stopping = early_stopping
        self.num_beams = num_beams
        self.beams = []
        self.worst_score = 1e9

    def __len__(self):
        """
        Number of hypotheses in the list.
        """
        return len(self.beams)

    def add(self, hyp, sum_logprobs):
        """
        Add a new hypothesis to the list.
        """
        score = sum_logprobs / len(hyp) ** self.length_penalty
        if len(self) < self.num_beams or score > self.worst_score:
            self.beams.append((score, hyp))
            if len(self) > self.num_beams:
                sorted_scores = sorted([(s, idx) for idx, (s, _) in enumerate(self.beams)])
                del self.beams[sorted_scores[0][1]]
                self.worst_score = sorted_scores[1][0]
            else:
                self.worst_score = min(score, self.worst_score)

    def is_done(self, best_sum_logprobs, cur_len):
        """
        If there are enough hypotheses and that none of the hypotheses being generated can become better than the worst
        one in the heap, then we are done with this sentence.
        """

        if len(self) < self.num_beams:
            return False
        elif self.early_stopping:
            return True
        else:
            cur_score = best_sum_logprobs / cur_len ** self.length_penalty
            ret = self.worst_score >= cur_score
            return ret