Spaces:
Sleeping
Sleeping
File size: 17,538 Bytes
801501a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
import os
from .. import constants as const
import pickle
import pickle5
from shutil import copyfile, move
from ..custom_types import *
from PIL import Image
import time
import json
import matplotlib.pyplot as plt
import sys
from ..constants import PROJECT_ROOT
if PROJECT_ROOT not in sys.path:
sys.path.append(PROJECT_ROOT)
# sys.path.append("/home/juil/projects/3D_CRISPR/spaghetti_github")
def image_to_display(img) -> ARRAY:
if type(img) is str:
img = Image.open(str(img))
if type(img) is not V:
img = V(img)
return img
def imshow(img, title: Optional[str] = None):
img = image_to_display(img)
plt.imshow(img)
plt.axis("off")
if title is not None:
plt.title(title)
plt.show()
plt.close('all')
def load_image(path: str, color_type: str = 'RGB') -> ARRAY:
for suffix in ('.png', '.jpg'):
path_ = add_suffix(path, suffix)
if os.path.isfile(path_):
path = path_
break
image = Image.open(path).convert(color_type)
return V(image)
def save_image(image: Union[ARRAY, Image.Image], path: str):
if type(image) is ARRAY:
if image.shape[-1] == 1:
image = image[:, :, 0]
image = Image.fromarray(image)
init_folders(path)
image.save(path)
def split_path(path: str) -> List[str]:
extension = os.path.splitext(path)[1]
dir_name, name = os.path.split(path)
name = name[: len(name) - len(extension)]
return [dir_name, name, extension]
def init_folders(*folders):
if const.DEBUG:
return
for f in folders:
dir_name = os.path.dirname(f)
if dir_name and not os.path.exists(dir_name):
os.makedirs(dir_name)
def is_file(path: str):
return os.path.isfile(path)
def add_suffix(path: str, suffix: str) -> str:
if len(path) < len(suffix) or path[-len(suffix):] != suffix:
path = f'{path}{suffix}'
return path
def remove_suffix(path: str, suffix: str) -> str:
if len(path) > len(suffix) and path[-len(suffix):] == suffix:
path = path[:-len(suffix)]
return path
def path_init(suffix: str, path_arg_ind: int, is_save: bool):
def wrapper(func):
def do(*args, **kwargs):
path = add_suffix(args[path_arg_ind], suffix)
if is_save:
init_folders(path)
args = [args[i] if i != path_arg_ind else path for i in range(len(args))]
return func(*args, **kwargs)
return do
return wrapper
def copy_file(src: str, dest: str, force=False):
if const.DEBUG:
return
if os.path.isfile(src):
if force or not os.path.isfile(dest):
copyfile(src, dest)
return True
else:
print("Destination file already exist. To override, set force=True")
return False
def load_image(path: str, color_type: str = 'RGB') -> ARRAY:
for suffix in ('.png', '.jpg'):
path_ = add_suffix(path, suffix)
if os.path.isfile(path_):
path = path_
break
image = Image.open(path).convert(color_type)
return V(image)
@path_init('.png', 1, True)
def save_image(image: ARRAY, path: str):
if type(image) is ARRAY:
if image.shape[-1] == 1:
image = image[:, :, 0]
image = Image.fromarray(image)
image.save(path)
def save_np(arr_or_dict: Union[ARRAY, T, dict], path: str):
if const.DEBUG:
return
init_folders(path)
if type(arr_or_dict) is dict:
path = add_suffix(path, '.npz')
np.savez_compressed(path, **arr_or_dict)
else:
if type(arr_or_dict) is T:
arr_or_dict = arr_or_dict.detach().cpu().numpy()
path = remove_suffix(path, '.npy')
np.save(path, arr_or_dict)
@path_init('.npy', 0, False)
def load_np(path: str):
return np.load(path)
@path_init('.pkl', 0, False)
def load_pickle(path: str):
data = None
if os.path.isfile(path):
try:
with open(path, 'rb') as f:
data = pickle.load(f)
except ValueError:
with open(path, 'rb') as f:
data = pickle5.load(f)
return data
@path_init('.pkl', 1, True)
def save_pickle(obj, path: str):
if const.DEBUG:
return
with open(path, 'wb') as f:
pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)
def load_txt_labels(path: str) -> VN:
for suffix in ('.txt', '.seg'):
path_ = add_suffix(path, suffix)
if os.path.isfile(path_):
return np.loadtxt(path_, dtype=np.int64) - 1
return None
@path_init('.txt', 0, False)
def load_txt(path: str) -> List[str]:
data = []
if os.path.isfile(path):
with open(path, 'r') as f:
for line in f:
data.append(line.strip())
return data
# def load_points(path: str) -> T:
# path = add_suffix(path, '.pts')
# points = [int_b(num) for num in load_txt(path)]
# return torch.tensor(points, dtype=torch.int64)
def save_txt(array, path: str):
if const.DEBUG:
return
path_ = add_suffix(path, '.txt')
with open(path_, 'w') as f:
for i, num in enumerate(array):
f.write(f'{num}{" " if i < len(array) - 1 else ""}')
def move_file(src: str, dest: str):
if const.DEBUG:
return
if os.path.isfile(src):
move(src, dest)
return True
return False
@path_init('.json', 1, True)
def save_json(obj, path: str):
with open(path, 'w') as f:
json.dump(obj, f, indent=4)
def collect(root: str, *suffix, prefix='') -> List[List[str]]:
if os.path.isfile(root):
folder = os.path.split(root)[0] + '/'
extension = os.path.splitext(root)[-1]
name = root[len(folder): -len(extension)]
paths = [[folder, name, extension]]
else:
paths = []
root = add_suffix(root, '/')
if not os.path.isdir(root):
print(f'Warning: trying to collect from {root} but dir isn\'t exist')
else:
p_len = len(prefix)
for path, _, files in os.walk(root):
for file in files:
file_name, file_extension = os.path.splitext(file)
p_len_ = min(p_len, len(file_name))
if file_extension in suffix and file_name[:p_len_] == prefix:
paths.append((f'{add_suffix(path, "/")}', file_name, file_extension))
paths.sort(key=lambda x: os.path.join(x[1], x[2]))
return paths
def delete_all(root:str, *suffix: str):
if const.DEBUG:
return
paths = collect(root, *suffix)
for path in paths:
os.remove(''.join(path))
def delete_single(path: str) -> bool:
if os.path.isfile(path):
os.remove(path)
return True
return False
def colors_to_colors(colors: COLORS, mesh: T_Mesh) -> T:
if type(colors) is not T:
if type(colors) is V:
colors = torch.from_numpy(colors).long()
else:
colors = torch.tensor(colors, dtype=torch.int64)
if colors.max() > 1:
colors = colors.float() / 255
if colors.dim() == 1:
colors = colors.unsqueeze(int(colors.shape[0] != 3)).expand_as(mesh[0])
return colors
def load_mesh(file_name: str, dtype: Union[type(T), type(V)] = T,
device: D = CPU) -> Union[T_Mesh, V_Mesh, T, Tuple[T, List[List[int]]]]:
def off_parser():
header = None
def parser_(clean_line: list):
nonlocal header
if not clean_line:
return False
if len(clean_line) == 3 and not header:
header = True
elif len(clean_line) == 3:
return 0, 0, float
elif len(clean_line) > 3:
return 1, -int(clean_line[0]), int
return parser_
def obj_parser(clean_line: list):
nonlocal is_quad
if not clean_line:
return False
elif clean_line[0] == 'v':
return 0, 1, float
elif clean_line[0] == 'f':
is_quad = is_quad or len(clean_line) != 4
return 1, 1, int
return False
def fetch(lst: list, idx: int, dtype: type):
uv_vs_ids = None
if '/' in lst[idx]:
lst = [item.split('/') for item in lst[idx:]]
lst = [item[0] for item in lst]
idx = 0
face_vs_ids = [dtype(c.split('/')[0]) for c in lst[idx:]]
if dtype is float and len(face_vs_ids) > 3:
face_vs_ids = face_vs_ids[:3]
return face_vs_ids, uv_vs_ids
def load_from_txt(parser) -> TS:
mesh_ = [[], []]
with open(file_name, 'r') as f:
for line in f:
clean_line = line.strip().split()
info = parser(clean_line)
if not info:
continue
data = fetch(clean_line, info[1], info[2])
mesh_[info[0]].append(data[0])
if is_quad:
faces = mesh_[1]
for face in faces:
for i in range(len(face)):
face[i] -= 1
else:
faces = torch.tensor(mesh_[1], dtype=torch.int64)
if len(faces) > 0 and faces.min() != 0:
faces -= 1
mesh_ = torch.tensor(mesh_[0], dtype=torch.float32), faces
return mesh_
for suffix in ['.obj', '.off', '.ply']:
file_name_tmp = add_suffix(file_name, suffix)
if os.path.isfile(file_name_tmp):
file_name = file_name_tmp
break
is_quad = False
name, extension = os.path.splitext(file_name)
if extension == '.obj':
mesh = load_from_txt(obj_parser)
elif extension == '.off':
mesh = load_from_txt(off_parser())
elif extension == '.ply':
mesh = load_ply(file_name)
else:
raise ValueError(f'mesh file {file_name} is not exist or not supported')
if type(mesh[1]) is T and not ((mesh[1] >= 0) * (mesh[1] < mesh[0].shape[0])).all():
print(f"err: {file_name}")
assert type(mesh[1]) is not T or ((mesh[1] >= 0) * (mesh[1] < mesh[0].shape[0])).all()
if dtype is V:
mesh = mesh[0].numpy(), mesh[1].numpy()
elif device != CPU:
mesh = mesh[0].to(device), mesh[1].to(device)
if len(mesh[1]) == 0 and len(mesh[0]) > 0:
return mesh[0]
return mesh
@path_init('.xyz', 1, True)
def export_xyz(pc: T, path: str, normals: Optional[T] = None):
pc = pc.tolist()
if normals is not None:
normals = normals.tolist()
with open(path, 'w') as f:
for i in range(len(pc)):
x, y, z = pc[i]
f.write(f'{x} {y} {z}')
if normals is not None:
x, y, z = normals[i]
f.write(f' {x} {y} {z}')
if i < len(pc) - 1:
f.write('\n')
@path_init('.txt', 2, True)
def export_gmm(gmm: TS, item: int, file_name: str, included: Optional[List[int]] = None):
if included is None:
included = [1] * gmm[0].shape[2]
mu, p, phi, eigen = [tensor[item, 0].flatten().cpu() for tensor in gmm]
# phi = phi.softmax(0)
with open(file_name, 'w') as f:
for tensor in (phi, mu, eigen, p):
tensor_str = [f'{number:.5f}' for number in tensor.tolist()]
f.write(f"{' '.join(tensor_str)}\n")
list_str = [f'{number:d}' for number in included]
f.write(f"{' '.join(list_str)}\n")
@path_init('.txt', 0, False)
def load_gmm(path, as_np: bool = False, device: D = CPU):
parsed = []
with open(path, 'r') as f:
lines = [line.strip() for line in f]
for i, line in enumerate(lines):
line = line.split(" ")
arr = [float(item) for item in line]
if as_np:
arr = V(arr)
else:
arr = torch.tensor(arr, device=device)
if 0 < i < 3:
arr = arr.reshape((-1, 3))
# swap = arr[:, 2].copy()
# arr[:, 2] = arr[:, 1]
# arr[:, 1] = swap
elif i == 3:
arr = arr.reshape((-1, 3, 3))
# arr = arr.transpose(0, 2, 1)
elif i == 4:
if as_np:
arr = arr.astype(np.bool_)
else:
arr = arr.bool()
parsed.append(arr)
return parsed
@path_init('.txt', 1, True)
def export_list(lst: List[Any], path: str):
with open(path, "w") as f:
for i in range(len(lst)):
f.write(f'{lst[i]}\n')
@path_init('.obj', 1, True)
def export_mesh(mesh: Union[V_Mesh, T_Mesh, T, Tuple[T, List[List[int]]]], file_name: str,
colors: Optional[COLORS] = None, normals: TN = None, edges=None, spheres=None):
# return
if type(mesh) is not tuple and type(mesh) is not list:
mesh = mesh, None
vs, faces = mesh
if vs.shape[1] < 3:
vs = torch.cat((vs, torch.zeros(len(vs), 3 - vs.shape[1], device=vs.device)), dim=1)
if colors is not None:
colors = colors_to_colors(colors, mesh)
if not os.path.isdir(os.path.dirname(file_name)):
return
if faces is not None:
if type(faces) is T:
faces: T = faces + 1
faces_lst = faces.tolist()
else:
faces_lst_: List[List[int]] = faces
faces_lst = []
for face in faces_lst_:
faces_lst.append([face[i] + 1 for i in range(len(face))])
with open(file_name, 'w') as f:
for vi, v in enumerate(vs):
if colors is None or colors[vi, 0] < 0:
v_color = ''
else:
v_color = ' %f %f %f' % (colors[vi, 0].item(), colors[vi, 1].item(), colors[vi, 2].item())
f.write("v %f %f %f%s\n" % (v[0], v[1], v[2], v_color))
if normals is not None:
for n in normals:
f.write("vn %f %f %f\n" % (n[0], n[1], n[2]))
if faces is not None:
for face in faces_lst:
face = [str(f) for f in face]
f.write(f'f {" ".join(face)}\n')
if edges is not None:
for edges_id in range(edges.shape[0]):
f.write(f'\ne {edges[edges_id][0].item():d} {edges[edges_id][1].item():d}')
if spheres is not None:
for sphere_id in range(spheres.shape[0]):
f.write(f'\nsp {spheres[sphere_id].item():d}')
@path_init('.ply', 1, True)
def export_ply(mesh: T_Mesh, path: str, colors: T):
colors = colors_to_colors(colors, mesh)
colors = (colors * 255).long()
vs, faces = mesh
vs = vs.clone()
swap = vs[:, 1].clone()
vs[:, 1] = vs[:, 2]
vs[:, 2] = swap
min_cor, max_cor= vs.min(0)[0], vs.max(0)[0]
vs = vs - ((min_cor + max_cor) / 2)[None, :]
vs = vs / vs.max()
vs[:, 2] = vs[:, 2] - vs[:, 2].min()
num_vs = vs.shape[0]
num_faces = faces.shape[0]
with open(path, 'w') as f:
f.write(f'ply\nformat ascii 1.0\n'
f'element vertex {num_vs:d}\nproperty float x\nproperty float y\nproperty float z\n'
f'property uchar red\nproperty uchar green\nproperty uchar blue\n'
f'element face {num_faces:d}\nproperty list uchar int vertex_indices\nend_header\n')
for vi, v in enumerate(vs):
color = f'{colors[vi, 0].item():d} {colors[vi, 1].item():d} {colors[vi, 2].item():d}'
f.write(f'{v[0].item():f} {v[1].item():f} {v[2].item():f} {color}\n')
for face in faces:
f.write(f'3 {face[0].item():d} {face[1].item():d} {face[2].item():d}\n')
@path_init('.ply', 0, False)
def load_ply(path: str):
import plyfile
plydata = plyfile.PlyData.read(path)
vertices = plydata.elements[0].data
vertices = [[float(item[0]), float(item[1]), float(item[2])] for item in vertices]
vertices = torch.tensor(vertices)
faces = plydata.elements[1].data
faces = [[int(item[0][0]), int(item[0][1]), int(item[0][2])] for item in faces]
faces = torch.tensor(faces)
return vertices, faces
@path_init('', 1, True)
def save_model(model: Union[Optimizer, nn.Module], model_path: str):
if const.DEBUG:
return
init_folders(model_path)
torch.save(model.state_dict(), model_path)
def load_model(model: Union[Optimizer, nn.Module], model_path: str, device: D, verbose: bool = False):
if os.path.isfile(model_path):
model.load_state_dict(torch.load(model_path, map_location=device))
if verbose:
print(f'loading {type(model).__name__} from {model_path}')
elif verbose:
print(f'init {type(model).__name__}')
return model
def measure_time(func, num_iters: int, *args):
start_time = time.time()
for i in range(num_iters):
func(*args)
total_time = time.time() - start_time
avg_time = total_time / num_iters
print(f"{str(func).split()[1].split('.')[-1]} total time: {total_time}, average time: {avg_time}")
def get_time_name(name: str, format_="%m_%d-%H_%M") -> str:
return f'{name}_{time.strftime(format_)}'
@path_init('.txt', 0, False)
def load_shapenet_seg(path: str) -> TS:
labels, vs = [], []
with open(path, 'r') as f:
for line in f:
data = line.strip().split()
vs.append([float(item) for item in data[:3]])
labels.append(int(data[-1].split('.')[0]))
return torch.tensor(vs, dtype=torch.float32), torch.tensor(labels, dtype=torch.int64)
@path_init('.json', 0, False)
def load_json(path: str):
with open(path, 'r') as f:
data = json.load(f)
return data
|