Update app.py
Browse files
app.py
CHANGED
|
@@ -4,12 +4,11 @@ import gradio as gr
|
|
| 4 |
import numpy as np
|
| 5 |
import random
|
| 6 |
#from diffusers import FluxPipeline
|
| 7 |
-
from huggingface_hub import
|
| 8 |
from translatepy import Translator
|
| 9 |
#from huggingface_hub import hf_hub_download
|
| 10 |
import requests
|
| 11 |
import re
|
| 12 |
-
import asyncio
|
| 13 |
from PIL import Image
|
| 14 |
|
| 15 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
|
@@ -32,8 +31,7 @@ JS = """function () {
|
|
| 32 |
}
|
| 33 |
}"""
|
| 34 |
|
| 35 |
-
|
| 36 |
-
client2 = AsyncInferenceClient()
|
| 37 |
|
| 38 |
def enable_lora(lora_in, lora_add):
|
| 39 |
if not lora_in and not lora_add:
|
|
@@ -43,7 +41,7 @@ def enable_lora(lora_in, lora_add):
|
|
| 43 |
lora_in = lora_add
|
| 44 |
return lora_in
|
| 45 |
|
| 46 |
-
|
| 47 |
prompt:str,
|
| 48 |
model:str,
|
| 49 |
width:int=768,
|
|
@@ -61,7 +59,7 @@ async def generate_image(
|
|
| 61 |
|
| 62 |
#generator = torch.Generator().manual_seed(seed)
|
| 63 |
|
| 64 |
-
image1 =
|
| 65 |
prompt=text,
|
| 66 |
height=height,
|
| 67 |
width=width,
|
|
@@ -69,7 +67,7 @@ async def generate_image(
|
|
| 69 |
num_inference_steps=steps,
|
| 70 |
model=basemodel,
|
| 71 |
)
|
| 72 |
-
image2 =
|
| 73 |
prompt=text,
|
| 74 |
height=height,
|
| 75 |
width=width,
|
|
@@ -79,7 +77,7 @@ async def generate_image(
|
|
| 79 |
)
|
| 80 |
return image1, image2, seed
|
| 81 |
|
| 82 |
-
|
| 83 |
prompt:str,
|
| 84 |
lora_in:str="",
|
| 85 |
lora_add:str="",
|
|
@@ -92,7 +90,7 @@ async def gen(
|
|
| 92 |
):
|
| 93 |
model = enable_lora(lora_in, lora_add)
|
| 94 |
print(model)
|
| 95 |
-
image1, image2, seed =
|
| 96 |
return image1, image2, seed
|
| 97 |
|
| 98 |
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
import random
|
| 6 |
#from diffusers import FluxPipeline
|
| 7 |
+
from huggingface_hub import InferenceClient
|
| 8 |
from translatepy import Translator
|
| 9 |
#from huggingface_hub import hf_hub_download
|
| 10 |
import requests
|
| 11 |
import re
|
|
|
|
| 12 |
from PIL import Image
|
| 13 |
|
| 14 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
|
|
|
| 31 |
}
|
| 32 |
}"""
|
| 33 |
|
| 34 |
+
client = InferenceClient()
|
|
|
|
| 35 |
|
| 36 |
def enable_lora(lora_in, lora_add):
|
| 37 |
if not lora_in and not lora_add:
|
|
|
|
| 41 |
lora_in = lora_add
|
| 42 |
return lora_in
|
| 43 |
|
| 44 |
+
def generate_image(
|
| 45 |
prompt:str,
|
| 46 |
model:str,
|
| 47 |
width:int=768,
|
|
|
|
| 59 |
|
| 60 |
#generator = torch.Generator().manual_seed(seed)
|
| 61 |
|
| 62 |
+
image1 = client.text_to_image(
|
| 63 |
prompt=text,
|
| 64 |
height=height,
|
| 65 |
width=width,
|
|
|
|
| 67 |
num_inference_steps=steps,
|
| 68 |
model=basemodel,
|
| 69 |
)
|
| 70 |
+
image2 = client.text_to_image(
|
| 71 |
prompt=text,
|
| 72 |
height=height,
|
| 73 |
width=width,
|
|
|
|
| 77 |
)
|
| 78 |
return image1, image2, seed
|
| 79 |
|
| 80 |
+
def gen(
|
| 81 |
prompt:str,
|
| 82 |
lora_in:str="",
|
| 83 |
lora_add:str="",
|
|
|
|
| 90 |
):
|
| 91 |
model = enable_lora(lora_in, lora_add)
|
| 92 |
print(model)
|
| 93 |
+
image1, image2, seed = generate_image(prompt,model,width,height,scales,steps,seed)
|
| 94 |
return image1, image2, seed
|
| 95 |
|
| 96 |
|