import json import os import pickle from rich.progress import track from tools.tsr.utils import get_task_ids, to_path def collect_sample_info(sample_dir: str, sample_eval_dir: str, dataset: str): if os.path.exists(sample_dir) and len(os.listdir(sample_dir)) > 0: # cache file exists return task_ids = get_task_ids(dataset) assert os.path.exists(sample_eval_dir), "sample evaluation files missing" os.makedirs(sample_dir, exist_ok=True) kill_info = {task_id: {} for task_id in task_ids} model_paths = os.listdir(sample_eval_dir) for model_path in track(model_paths, description="Collecting sets..."): if not model_path[-1].isdigit(): continue eval_json_path = os.path.join(sample_eval_dir, model_path, "eval_results.json") if not os.path.exists(eval_json_path): continue with open(eval_json_path, "r") as f: res = json.load(f)["eval"] for task_id, v in res.items(): if task_id not in task_ids: continue for i_code, (status, res_list) in enumerate(v["plus"]): if status == "success": continue for i_test, res in enumerate(res_list): test_id = f"plus_{i_test}" if res == False: if "_" in task_id: task_id = task_id.replace("_", "/") kill_info[task_id].setdefault(test_id, []).append( (model_path, i_code) ) for task_id in task_ids: path_task_id = to_path(task_id) with open(os.path.join(sample_dir, f"{path_task_id}.pkl"), "wb") as f: pickle.dump(kill_info[task_id], f) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("--report_dir", required=True, type=str) parser.add_argument("--dataset", type=str, choices=["humaneval", "mbpp"]) parser.add_argument("--sample_eval_dir", required=True, type=str) args = parser.parse_args() sample_dir = os.path.join(args.report_dir, "sample_cache") collect_sample_info(sample_dir, args.sample_eval_dir, args.dataset)