File size: 8,705 Bytes
c87c295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import argparse
import json
import os
import pickle
from concurrent.futures import ProcessPoolExecutor, as_completed
from copy import deepcopy
from typing import Any, Dict, List, Optional, Tuple

from rich.progress import track

from evalplus.data import write_jsonl
from tools.tsr.coverage_init import collect_coverage_info
from tools.tsr.mutation_init import collect_mutation_info
from tools.tsr.sample_init import collect_sample_info
from tools.tsr.utils import get_problems, get_task_ids, to_path


def global_util_init(dataset: str):
    global problems
    global task_ids
    global problem_count
    problems = get_problems(dataset)
    task_ids = get_task_ids(dataset)
    problem_count = len(problems)


###########################
# Greedy Min Set Covering #
###########################


def merge_set_cover(*args) -> Dict[str, List[str]]:
    merged_set_cover = {task_id: [] for task_id in task_ids}
    for set_cover_dict in args:
        for task_id, plus_tests in set_cover_dict.items():
            for plus_test in plus_tests:
                if plus_test not in merged_set_cover[task_id]:
                    merged_set_cover[task_id].append(plus_test)
    return merged_set_cover


def greedy_cover(
    task_id: str, tests: Dict[str, List[Any]], exclude_model: str
) -> Tuple[str, List[str]]:
    q, U = [], set()
    for test_name, test_cover in tests.items():
        cover_set = set()
        for model_path, i_code in test_cover:
            if exclude_model not in model_path:
                cover_set.add((model_path, i_code))
        q.append((test_name, cover_set))
        U = U.union(cover_set)
    # Greedy algorithm for min set cover
    min_cover = []
    while len(U) > 0:
        max_uncover_set, max_test_name = {}, ""
        for test_name, cover_set in q:
            if len(cover_set) > len(max_uncover_set):
                max_uncover_set = cover_set
                max_test_name = test_name
        min_cover.append(max_test_name)
        U = U - max_uncover_set
        qq = []
        for test_name, cover_set in q:
            new_cover_set = U.intersection(cover_set)
            if len(new_cover_set) != 0:
                qq.append((test_name, new_cover_set))
        q = qq
    return task_id, min_cover


def parallel_greedy_cover(
    info_dict: Optional[Dict[str, Dict[str, List[Any]]]],
    exclude_model: str,
    type: str,
    **kwargs,
) -> Dict[str, List[str]]:
    plus_tests = {task_id: [] for task_id in task_ids}

    with ProcessPoolExecutor(max_workers=32) as executor:
        futures = []
        for task_id in task_ids:
            if type == "sample":
                path_task_id = to_path(task_id)
                sample_dir = kwargs["sample_dir"]
                with open(os.path.join(sample_dir, f"{path_task_id}.pkl"), "rb") as f:
                    td = pickle.load(f)
                args = (task_id, td, exclude_model)
            else:
                args = (task_id, info_dict[task_id], exclude_model)
            futures.append(executor.submit(greedy_cover, *args))
        for future in track(as_completed(futures), f"min set cover :: {type}"):
            task_id, min_cover = future.result()
            plus_tests[task_id] = min_cover

    return plus_tests


#####################
# Collect Set Cover #
#####################


def get_coverage_set_cover(
    coverage_dir: str, exclude_model: str, dataset: str
) -> Dict[str, List[str]]:
    coverage_info_dict = collect_coverage_info(coverage_dir, dataset)
    return parallel_greedy_cover(coverage_info_dict, exclude_model, "coverage")


def get_mutation_set_cover(
    mutation_dir: str, exclude_model: str, dataset: str
) -> Dict[str, List[str]]:
    mutation_info_dict = collect_mutation_info(
        os.path.join(mutation_dir, "eval_results.json"), dataset
    )
    return parallel_greedy_cover(mutation_info_dict, exclude_model, "mutation")


def get_sample_set_cover(
    sample_dir: str, sample_eval_dir: str, exclude_model: str, dataset: str
) -> Dict[str, List[str]]:
    collect_sample_info(sample_dir, sample_eval_dir, dataset)
    return parallel_greedy_cover(None, exclude_model, "sample", sample_dir=sample_dir)


#################
# pass@1 greedy #
#################


def compute_avg_test(set_cover_info: Dict[str, List[str]]) -> float:
    sum_tests = sum(
        len(problems[task_id]["base_input"]) + len(set_cover_info[task_id])
        for task_id in task_ids
    )
    return sum_tests / problem_count


def gen_report(set_cover_info: Dict[str, List[str]], sample_eval_dir: str, model: str):
    tsr_dict = {"ntests": compute_avg_test(set_cover_info), "pass@1": 0}
    model_path = os.path.join(sample_eval_dir, f"{model}_temp_0.0", "eval_results.json")
    with open(model_path, "r") as f:
        mdict = json.load(f)
    correct_cnt = 0
    for task_id in task_ids:
        legacy_task_id = task_id
        if legacy_task_id not in mdict["eval"]:
            legacy_task_id = legacy_task_id.replace("/", "_")
        if mdict["eval"][legacy_task_id]["base"][0][0] != "success":
            continue
        correct = True
        for plus_id in set_cover_info[task_id]:
            index = int(plus_id.split("_")[-1])
            if mdict["eval"][legacy_task_id]["plus"][0][1][index] == False:
                correct = False
                break
        if correct:
            correct_cnt += 1
    tsr_dict["pass@1"] = correct_cnt / problem_count
    return tsr_dict


def dump_humaneval_plus_mini(set_cover_info: Dict[str, List[str]], mini_path: str):
    new_problems = []
    for task_id in task_ids:
        otask = problems[task_id]
        task = {
            "task_id": task_id,
            "prompt": otask["prompt"],
            "contract": otask["contract"],
            "canonical_solution": otask["canonical_solution"],
            "entry_point": otask["entry_point"],
            "base_input": otask["base_input"],
            "plus_input": [],
            "atol": otask["atol"],
        }
        for plus_test in set_cover_info[task_id]:
            index = int(plus_test.split("_")[-1])
            task["plus_input"].append(otask["plus_input"][index])
        new_problems.append(deepcopy(task))
    write_jsonl(os.path.join(mini_path, "HumanEvalPlus-Mini.jsonl"), new_problems)


def main(flags):
    coverage_dir = os.path.join(flags.report_dir, "coverage_cache")
    mutation_dir = os.path.join(flags.report_dir, "mutation_cache")
    sample_dir = os.path.join(flags.report_dir, "sample_cache")
    os.makedirs(flags.report_dir, exist_ok=True)

    exclude_model: str = flags.model
    if exclude_model.endswith("b"):  # format: model_name + parameter size
        exclude_model = "".join(exclude_model.split("-")[:-1])

    coverage_set_cover = get_coverage_set_cover(
        coverage_dir, exclude_model, flags.dataset
    )
    mutation_set_cover = get_mutation_set_cover(
        mutation_dir, exclude_model, flags.dataset
    )
    sample_set_cover = get_sample_set_cover(
        sample_dir, flags.sample_eval_dir, exclude_model, flags.dataset
    )
    merged_set_cover = merge_set_cover(
        coverage_set_cover, mutation_set_cover, sample_set_cover
    )

    if flags.model != "ALL":
        final_report = dict()
        # Stage 1: Coverage min set cover
        final_report["coverage"] = gen_report(
            coverage_set_cover, flags.sample_eval_dir, flags.model
        )
        # Stage 2: Mutation min set cover
        final_report["mutation"] = gen_report(
            mutation_set_cover, flags.sample_eval_dir, flags.model
        )
        # Stage 3: Sampling min set cover
        final_report["sample"] = gen_report(
            sample_set_cover, flags.sample_eval_dir, flags.model
        )
        # Stage 4: All
        final_report["full"] = gen_report(
            merged_set_cover, flags.sample_eval_dir, flags.model
        )
        with open(
            os.path.join(flags.report_dir, f"report_{flags.model}.json"), "w"
        ) as f:
            json.dump(final_report, f, indent=4)
    else:
        dump_humaneval_plus_mini(merged_set_cover, flags.mini_path)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model", required=True, type=str, help="Model for testing")
    parser.add_argument("--dataset", type=str, choices=["humaneval", "mbpp"])
    parser.add_argument(
        "--report_dir", type=str, help="Path to JSON report and cache files"
    )
    parser.add_argument(
        "--sample_eval_dir", type=str, help="Path to sample evaluation files"
    )
    parser.add_argument("--mini_path", type=str, help="Path to Mini Dataset")
    args = parser.parse_args()

    global_util_init(args.dataset)
    main(args)