Spaces:
Runtime error
Runtime error
File size: 12,592 Bytes
c87c295 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
# `EvalPlus(π) => π`
<p align="center">
<a href="https://evalplus.github.io/leaderboard.html"><img src="https://img.shields.io/badge/%F0%9F%8F%86-leaderboard-8A2BE2"></a>
<a href="https://openreview.net/forum?id=1qvx610Cu7"><img src="https://img.shields.io/badge/Paper-NeurIPS'23-a55fed.svg"></a>
<a href="https://huggingface.co/evalplus/"><img src="https://img.shields.io/badge/π€%20Hugging%20Face-evalplus-%23ff8811.svg"></a>
<a href="https://pypi.org/project/evalplus/"><img src="https://img.shields.io/pypi/v/evalplus?color=g"></a>
<a href="https://pepy.tech/project/evalplus"><img src="https://static.pepy.tech/badge/evalplus"></a>
<a href="https://hub.docker.com/r/ganler/evalplus" title="Docker"><img src="https://img.shields.io/docker/image-size/ganler/evalplus"></a>
<a href="https://github.com/evalplus/evalplus/blob/master/LICENSE"><img src="https://img.shields.io/pypi/l/evalplus"></a>
</p>
<p align="center">
<a href="#-quick-start">π₯Quick Start</a> β’
<a href="#-llm-generated-code">π»LLM code</a> β’
<a href="#-useful-tools">π¨Tools</a> β’
<a href="#-citation">πCitation</a> β’
<a href="#-acknowledgement">πAcknowledgement</a>
</p>
> [!Important]
> <div align="center">
> <b>
> π’ Who is the best LLM coder? Take a look at <a href="https://evalplus.github.io/leaderboard.html">the EvalPlus leaderboard π</a>! π’
> </b>
> <br>
> <b>
> π€ Request for independent model evaluation is <a href="https://github.com/evalplus/evalplus/issues/new/choose">open</a>!
> </b>
> </div>
## About
> [!Warning]
> <div align="center">
> <b>
> π¨ Evaluating LLM-generated code over datasets with "3 test-cases" is **NOT** enough! π¨
> </b>
> </div>
EvalPlus is a rigorous evaluation framework for LLM4Code, with:
* β¨ **HumanEval+**: 80x more tests than the original HumanEval!
* β¨ **MBPP+**: 35x more tests than the original MBPP!
* β¨ **Evaluation framework**: our packages/images/tools can easily and safely evaluate LLMs on above benchmarks.
Why EvalPlus? What does using EvalPlus datasets bring to you?
* β¨ **Reliable ranking**: See [our leaderboard](https://evalplus.github.io/leaderboard.html) for the latest LLM ranking before and after rigorous evaluation.
* β¨ **Code robustness**: Look at the score differences! esp. before (e.g., HumanEval) and after (e.g., HumanEval+) using EvalPlus! The drop/gap indicates if the LLM can generate more robust code: less drop means more robustness and a larger drop means the code tends to be more fragile.
* β¨**Pre-generated samples**: EvalPlus accelerates LLM4Code research by open-sourcing [LLM-generated samples](#-LLM-generated-code) for vairous models -- no need to re-run the expensive benchmarks!
Want to know more details? Read our [**NeurIPS'23 paper**](https://openreview.net/forum?id=1qvx610Cu7) [](https://openreview.net/forum?id=1qvx610Cu7) as well as our [**Google Slides**](https://docs.google.com/presentation/d/1eTxzUQG9uHaU13BGhrqm4wH5NmMZiM3nI0ezKlODxKs)!
## π₯ Quick Start
To get started, please first setup the environment:
```bash
pip install evalplus --upgrade
```
<details><summary>β¬ Install nightly version <i>:: click to expand ::</i></summary>
<div>
```bash
pip install "git+https://github.com/evalplus/evalplus.git" --upgrade
```
</div>
</details>
<details><summary>β¬ Using EvalPlus as a local repo? <i>:: click to expand ::</i></summary>
<div>
```bash
git clone https://github.com/evalplus/evalplus.git
cd evalplus
export PYTHONPATH=$PYTHONPATH:$(pwd)
pip install -r requirements.txt
```
</div>
</details>
### Code generation
Implement the `GEN_SOLUTION` function by calling the LLM to produce the complete solution (include the code) and save the samples to `samples.jsonl`:
```python
from evalplus.data import get_[human_eval|mbpp]_plus, write_jsonl
samples = [
dict(task_id=task_id, solution=GEN_SOLUTION(problem["prompt"]))
for task_id, problem in get_[human_eval|mbpp]_plus().items()
]
write_jsonl("samples.jsonl", samples)
```
<details><summary>π€ Structure of `problem`? <i>:: click to expand ::</i></summary>
<div>
* `task_id` is the identifier string for the task
* `entry_point` is name of the function
* `prompt` is the function signature with docstring
+ `canonical_solution` is the ground-truth implementation (re-implemented to fix bugs in HumanEval)
+ `base_input` is the test inputs in original HumanEval
+ `plus_input` is the test inputs brought by EvalPlus
</div>
</details>
> [!Note]
>
> **Expected Schema of `samples.jsonl`**
>
> 1. `task_id`: Task ID, which are the keys of `get_[human_eval|mbpp]_plus()`
> 2. `solution` (optional): Self-contained solution (usually including the prompt)
> * Example: `{"task_id": "HumanEval/?", "solution": "def f():\n return 1"}`
> 3. `completion` (optional): Function body without prompt
> * Example: `{"task_id": "HumanEval/?", "completion": " return 1"}`
>
> Only one of `solution` and `completion` is required. If both are provided, `solution` will be used.
> We also accept solutions in the form of directory, i.e., `--samples ${SAMPLE_DIR}` where `${SAMPLE_DIR}` is organized as: `${SAMPLE_DIR}/${TASK_ID}/{SAMPLE_ID}.py` (`${TASK_ID} = task_id.replace("/", "_")`).
### Code evaluation
You are strongly recommended to use a sandbox such as [docker](https://docs.docker.com/get-docker/):
```bash
docker run -v $(pwd):/app ganler/evalplus:latest --dataset [humaneval|mbpp] --samples samples.jsonl
```
...Or if you want to try it locally regardless of the risks β οΈ:
```bash
evalplus.evaluate --dataset [humaneval|mbpp] --samples samples.jsonl
```
> [!Warning]
>
> Do you use a very slow machine?
>
> LLM solutions are regarded as **failed** on timeout (and OOM etc.).
> Specifically, we set the timeout $T=\max(T_{base}, T_{gt}\times k)$, where:
>
> - $T_{base}$ is the minimal timeout (configurable by `--min-time-limit`; default to 1s);
> - $T_{gt}$ is the runtime of the ground-truth solutions (achieved via profiling);
> - $k$ is a configurable factor `--gt-time-limit-factor` (default to 4);
>
> If your machine is too slow and you are getting high-variance results, try to use larger $k$ and $T_{base}$.
>
> Additionally, you are **NOT** encouraged to make your test-bed over stressed while running evaluation.
> For example, using `--parallel 64` on a 4-core machine or doing something else during evaluation are bad ideas...
<details><summary>π€ Evaluate with local GitHub repo? <i>:: click to expand ::</i></summary>
<div>
```bash
export PYTHONPATH=$PYTHONPATH:$(pwd)
python evalplus/evaluate.py --dataset humaneval --samples samples.jsonl
```
</div>
</details>
<details><summary>β¨οΈ More command-line flags <i>:: click to expand ::</i></summary>
<div>
* `--parallel`: by default half of the cores
* `--base-only` (store_ture): only run base HumanEval tests
* `--i-just-wanna-run`: force a re-run
</div>
</details>
The output should be like (below is GPT-4 greedy decoding example):
```
Computing expected output...
Expected outputs computed in 15.18s
Reading samples...
164it [00:04, 37.79it/s]
Evaluating samples...
100%|ββββββββββββββββββββββββββββββββββββββββββ| 164/164 [00:03<00:00, 44.75it/s]
Base
{'pass@1': 0.8841463414634146}
Base + Extra
{'pass@1': 0.768}
```
- `Base` is the `pass@k` for the original HumanEval
- `Base + Extra` is the `pass@k` for the our **HumanEval+** (with extra tests)
- The "k" includes `[1, 10, 100]` where k values `<=` the sample size will be used
- A cache file named like `samples_eval_results.jsonl` will be cached. Remove it to re-run the evaluation
<details><summary>π€ How long it would take? <i>:: click to expand ::</i></summary>
<div>
If you do greedy decoding where there is only one sample for each task, the evaluation should take just a few seconds.
When running 200 samples x 164 tasks x ~700+ tests, it can take around 2-10 minute by using `--parallel 64` and `--test-details`.
Here are some tips to speed up the evaluation:
* Use `--parallel $(nproc)`
* Do **NOT** use `--test-details` if you just want to quickly get pass@k as `--test-details` will run all tests (700+ on average for each task), while without `--test-details` the testing for a sample stops immediately when it fails the first test.
* Use our pre-evaluated results (see [LLM-generated code](#-LLM-generated-code))
* Use HumanEval+ Mini
</div>
</details>
> [!Note]
>
> π **Try out `HumanEvalPlus-Mini`!** which selects a *minimal* set of additional tests with the highest quality, achieving almost the same effectiveness of the full version. Just add a **`--mini`** flag, it can run 23+% faster! (even faster if you evaluate all tests without fail-stop with `--test-details`).
>
> ```bash
> docker run -v $(pwd):/app ganler/evalplus:latest --dataset humaneval --samples samples.jsonl --mini
> # ...Or locally β οΈ
> # evalplus.evaluate --dataset humaneval --samples samples.jsonl --mini
> ```
## π» LLM-generated code
We also share pre-generated code samples from LLMs we have [evaluated](https://evalplus.github.io/leaderboard.html):
* **HumanEval+**: See the attachment of our [v0.1.0 release](https://github.com/evalplus/evalplus/releases/tag/v0.1.0).
* **MBPP+**: See the attachment of our [v0.2.0 release](https://github.com/evalplus/evalplus/releases/tag/v0.2.0).
Each sample file is packaged in a zip file named like `${model_name}_temp_${temperature}.zip`.
You can unzip them to a folder named like `${model_name}_temp_${temperature}` and run the evaluation from scratch with:
```bash
evalplus.evaluate --dataset humaneval --samples ${model_name}_temp_${temperature}
```
## π¨ Useful tools
To use these tools, please first install the repository from GitHub:
```bash
git clone https://github.com/evalplus/evalplus.git
cd evalplus
pip install -r requirements-tools.txt
```
### Syntax checker for LLM-generated code
Check LLM-produced code and answer the following questions:
1. Is the generation entirely done for all samples / all problems in the dataset?
2. Are LLM-generated code compilable? (if no, something could be wrong and you'd better check)
```shell
# Set PYTHONPATH to run local Python files
export PYTHONPATH=$PYTHONPATH:$(pwd)
python tools/checker.py --samples samples.jsonl --dataset [humaneval|mbpp]
# --samples can also be a directory organized as: ${SAMPLE_DIR}/${TASK_ID}/{SAMPLE_ID}.py
```
### Post code sanitizer
LLM-generated code may contain some syntax errors.
But some of them can be easily fixable by doing simple post-processing.
This tool will make the LLM-generated code more clean/compilable by doing certain post-processing such as trimming with more magical EOFs and some garbage non-code tokens.
```shell
# Set PYTHONPATH to run local Python files
export PYTHONPATH=$PYTHONPATH:$(pwd)
# π‘ If you are storing codes in directories:
python tools/sanitize.py --samples samples.jsonl --dataset [humaneval|mbpp]
# Sanitized code will be produced to `samples-sanitized.jsonl`
# π‘ If you are storing codes in directories:
python tools/sanitize.py --samples /path/to/vicuna-[??]b_temp_[??] --dataset [humaneval|mbpp]
# Sanitized code will be produced to `/path/to/vicuna-[??]b_temp_[??]-sanitized`
```
You should now further check the validity of sanitized code with `tools/checker.py`.
Sometimes (e.g., Chat models) there might be some natural language lines that impact the compilation.
You might use `--rm-prefix-lines` to cut those NL lines with a prefix (e.g., `--rm-prefix-lines "Here's"`).
### Render `pass@k` results to `rich` and LaTeX tables
```shell
python tools/render.py --type /path/to/[model]-[??]b # NOTE: no `_temp_[??]`
```

### Perform test input generation from scratch (TBD)
### Name convention
- `evalplus` is the package name.
- `${DATASET}_plus` is the name of dataset applied with `evalplus`.
## π Citation
```bibtex
@inproceedings{evalplus,
title = {Is Your Code Generated by Chat{GPT} Really Correct? Rigorous Evaluation of Large Language Models for Code Generation},
author = {Liu, Jiawei and Xia, Chunqiu Steven and Wang, Yuyao and Zhang, Lingming},
booktitle = {Thirty-seventh Conference on Neural Information Processing Systems},
year = {2023},
url = {https://openreview.net/forum?id=1qvx610Cu7},
}
```
## π Acknowledgement
- [HumanEval](https://github.com/openai/human-eval)
- [MBPP](https://github.com/google-research/google-research/tree/master/mbpp)
|