File size: 10,122 Bytes
c87c295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
from functional import *


class ChoiceStrategy(metaclass=ABCMeta):
    def __init__(self, choice):
        self.choice = choice
        self.delta = choice['delta']

    @abstractmethod
    def support(self):
        pass

    @abstractmethod
    def execute(self, bot_backend: BotBackend, history: List, whether_exit: bool):
        pass


class RoleChoiceStrategy(ChoiceStrategy):

    def support(self):
        return 'role' in self.delta

    def execute(self, bot_backend: BotBackend, history: List, whether_exit: bool):
        bot_backend.set_assistant_role_name(assistant_role_name=self.delta['role'])
        return history, whether_exit


class ContentChoiceStrategy(ChoiceStrategy):
    def support(self):
        return 'content' in self.delta and self.delta['content'] is not None
        # null value of content often occur in function call:
        #     {
        #       "role": "assistant",
        #       "content": null,
        #       "function_call": {
        #         "name": "python",
        #         "arguments": ""
        #       }
        #     }

    def execute(self, bot_backend: BotBackend, history: List, whether_exit: bool):
        bot_backend.add_content(content=self.delta.get('content', ''))
        history[-1][1] = bot_backend.content
        return history, whether_exit


class NameFunctionCallChoiceStrategy(ChoiceStrategy):
    def support(self):
        return 'function_call' in self.delta and 'name' in self.delta['function_call']

    def execute(self, bot_backend: BotBackend, history: List, whether_exit: bool):
        python_function_dict = bot_backend.jupyter_kernel.available_functions
        additional_tools = bot_backend.additional_tools
        bot_backend.set_function_name(function_name=self.delta['function_call']['name'])
        bot_backend.copy_current_bot_history(bot_history=history)
        if bot_backend.function_name not in python_function_dict and bot_backend.function_name not in additional_tools:
            history.append(
                [
                    None,
                    f'GPT attempted to call a function that does '
                    f'not exist: {bot_backend.function_name}\n '
                ]
            )
            whether_exit = True

        return history, whether_exit


class ArgumentsFunctionCallChoiceStrategy(ChoiceStrategy):

    def support(self):
        return 'function_call' in self.delta and 'arguments' in self.delta['function_call']

    def execute(self, bot_backend: BotBackend, history: List, whether_exit: bool):
        bot_backend.add_function_args_str(function_args_str=self.delta['function_call']['arguments'])

        if bot_backend.function_name == 'python':  # handle hallucinatory function calls
            """
            In practice, we have noticed that GPT, especially GPT-3.5, may occasionally produce hallucinatory
            function calls. These calls involve a non-existent function named `python` with arguments consisting 
            solely of raw code text (not a JSON format).
            """
            temp_code_str = bot_backend.function_args_str
            bot_backend.update_code_str(code_str=temp_code_str)
            bot_backend.update_display_code_block(
                display_code_block="\n🔴Working:\n```python\n{}\n```".format(temp_code_str)
            )
            history = copy.deepcopy(bot_backend.bot_history)
            history[-1][1] += bot_backend.display_code_block
        elif bot_backend.function_name == 'execute_code':
            temp_code_str = parse_json(function_args=bot_backend.function_args_str, finished=False)
            if temp_code_str is not None:
                bot_backend.update_code_str(code_str=temp_code_str)
                bot_backend.update_display_code_block(
                    display_code_block="\n🔴Working:\n```python\n{}\n```".format(
                        temp_code_str
                    )
                )
                history = copy.deepcopy(bot_backend.bot_history)
                history[-1][1] += bot_backend.display_code_block
            else:
                history = copy.deepcopy(bot_backend.bot_history)
                history[-1][1] += bot_backend.display_code_block
        else:
            pass

        return history, whether_exit


class FinishReasonChoiceStrategy(ChoiceStrategy):
    def support(self):
        return self.choice['finish_reason'] is not None

    def execute(self, bot_backend: BotBackend, history: List, whether_exit: bool):

        if bot_backend.content:
            bot_backend.add_gpt_response_content_message()

        bot_backend.update_finish_reason(finish_reason=self.choice['finish_reason'])
        if bot_backend.finish_reason == 'function_call':

            if bot_backend.function_name in bot_backend.jupyter_kernel.available_functions:
                history, whether_exit = self.handle_execute_code_finish_reason(
                    bot_backend=bot_backend, history=history, whether_exit=whether_exit
                )
            else:
                history, whether_exit = self.handle_tool_finish_reason(
                    bot_backend=bot_backend, history=history, whether_exit=whether_exit
                )

        bot_backend.reset_gpt_response_log_values(exclude=['finish_reason'])

        return history, whether_exit

    def handle_execute_code_finish_reason(self, bot_backend: BotBackend, history: List, whether_exit: bool):
        function_dict = bot_backend.jupyter_kernel.available_functions
        try:

            code_str = self.get_code_str(bot_backend)

            bot_backend.update_code_str(code_str=code_str)
            bot_backend.update_display_code_block(
                display_code_block="\n🟢Finished:\n```python\n{}\n```".format(code_str)
            )
            history = copy.deepcopy(bot_backend.bot_history)
            history[-1][1] += bot_backend.display_code_block

            # function response
            bot_backend.update_code_executing_state(code_executing=True)
            text_to_gpt, content_to_display = function_dict[
                bot_backend.function_name
            ](code_str)
            bot_backend.update_code_executing_state(code_executing=False)

            # add function call to conversion
            bot_backend.add_function_call_response_message(function_response=text_to_gpt, save_tokens=True)

            if bot_backend.interrupt_signal_sent:
                bot_backend.append_system_msg(prompt='Code execution is manually stopped by user, no need to fix.')

            add_code_execution_result_to_bot_history(
                content_to_display=content_to_display, history=history, unique_id=bot_backend.unique_id
            )
            return history, whether_exit

        except json.JSONDecodeError:
            history.append(
                [None, f"GPT generate wrong function args: {bot_backend.function_args_str}"]
            )
            whether_exit = True
            return history, whether_exit

        except KeyError as key_error:
            history.append([None, f'Backend key_error: {key_error}'])
            whether_exit = True
            return history, whether_exit

        except Exception as e:
            history.append([None, f'Backend error: {e}'])
            whether_exit = True
            return history, whether_exit

    @staticmethod
    def handle_tool_finish_reason(bot_backend: BotBackend, history: List, whether_exit: bool):
        function_dict = bot_backend.additional_tools
        function_name = bot_backend.function_name
        function = function_dict[function_name]['tool']

        # parser function args
        try:
            kwargs = json.loads(bot_backend.function_args_str)
            kwargs.update(function_dict[function_name]['additional_parameters'])
        except json.JSONDecodeError:
            history.append(
                [None, f"GPT generate wrong function args: {bot_backend.function_args_str}"]
            )
            whether_exit = True
            return history, whether_exit

        else:
            # function response
            function_response, hypertext_to_display = function(**kwargs)

            # add function call to conversion
            bot_backend.add_function_call_response_message(function_response=function_response, save_tokens=False)

            # add hypertext response to bot history
            add_function_response_to_bot_history(hypertext_to_display=hypertext_to_display, history=history)

            return history, whether_exit

    @staticmethod
    def get_code_str(bot_backend):
        if bot_backend.function_name == 'python':
            code_str = bot_backend.function_args_str
        else:
            code_str = parse_json(function_args=bot_backend.function_args_str, finished=True)
            if code_str is None:
                raise json.JSONDecodeError
        return code_str


class ChoiceHandler:
    strategies = [
        RoleChoiceStrategy, ContentChoiceStrategy, NameFunctionCallChoiceStrategy,
        ArgumentsFunctionCallChoiceStrategy, FinishReasonChoiceStrategy
    ]

    def __init__(self, choice):
        self.choice = choice

    def handle(self, bot_backend: BotBackend, history: List, whether_exit: bool):
        for Strategy in self.strategies:
            strategy_instance = Strategy(choice=self.choice)
            if not strategy_instance.support():
                continue
            history, whether_exit = strategy_instance.execute(
                bot_backend=bot_backend,
                history=history,
                whether_exit=whether_exit
            )
        return history, whether_exit


def parse_response(chunk, history: List, bot_backend: BotBackend):
    """
    :return: history, whether_exit
    """
    whether_exit = False
    if chunk['choices']:
        choice = chunk['choices'][0]
        choice_handler = ChoiceHandler(choice=choice)
        history, whether_exit = choice_handler.handle(
            history=history,
            bot_backend=bot_backend,
            whether_exit=whether_exit
        )

    return history, whether_exit