File size: 3,695 Bytes
67d278f
 
 
 
 
e8b1e31
 
 
 
 
67d278f
8cc0d5c
e8b1e31
 
 
 
 
 
67d278f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6bb065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67d278f
 
 
d6bb065
67d278f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import gradio as gr
import requests
from PIL import Image
from io import BytesIO
import os
from huggingface_hub import InferenceClient
API_TOKEN = os.getenv("HF_API_TOKEN")  # Ensure you've set this environment variable
API_URL = "https://api-inference.huggingface.co/models/enhanceaiteam/Flux-uncensored"

enhancer = InferenceClient(api_key =API_TOKEN)

for message in enhancer.chat_completion(
	model="meta-llama/Llama-3.2-1B-Instruct",
	messages=[{"role": "user", "content": "What is the capital of France?"}],
	max_tokens=500,
	stream=True,
):
    print(message.choices[0].delta.content, end="")
# Load API Token from environment variable

# Hugging Face Inference API URL

# Function to call Hugging Face API and get the generated image
def generate_image(prompt):
    headers = {"Authorization": f"Bearer {API_TOKEN}"}
    data = {"inputs": prompt}
    
    response = requests.post(API_URL, headers=headers, json=data)
    
    if response.status_code == 200:
        image_bytes = BytesIO(response.content)
        image = Image.open(image_bytes)
        return image
    else:
        return f"Error: {response.status_code}, {response.text}"
 
title_html="""
    <center>
        <div id="title-container">
            <h1 id="title-text">FLUX Capacitor</h1>
        </div>
    </center>
"""

css = """
.gradio-container {
    background: url(https://huggingface.co/spaces/K00B404/FLUX.1-Dev-Serverless-darn-enhanced-prompt/resolve/main/edge.png);
    background-size: 900px 880px;
    background-repeat: no-repeat;
    background-position: center;
    background-attachment: fixed;
    color:#000;
}
.dark\:bg-gray-950:is(.dark *) {
  --tw-bg-opacity: 1;
  background-color: rgb(157, 17, 142);
}
.gradio-container-4-41-0 .prose :last-child {
  margin-top: 8px !important;
}
.gradio-container-4-41-0 .prose :last-child {
  margin-bottom: -7px !important;
}
.dark {
    --button-primary-background-fill: #09e60d70;
    --button-primary-background-fill-hover: #00000070;
    --background-fill-primary: #000;
    --background-fill-secondary: #000;
}
.hide-container {
    margin-top;-2px;
}
#app-container3 {
    background-color: rgba(255, 255, 255, 0.001);  /* Corrected to make semi-transparent */
    max-width: 600px;
    margin-left: auto;
    margin-right: auto;
    margin-bottom: 10px;
    border-radius: 125px;
    box-shadow: 0 0 10px rgba(0,0,0,0.1); /* Adjusted shadow opacity */
}
#app-container {
    background-color: rgba(255, 255, 255, 0.001);  /* Semi-transparent background */
    max-width: 600px;
    margin: 0 auto;  /* Center horizontally */
    padding-bottom: 10px;
    border-radius: 25px;
    box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); /* Adjusted shadow opacity */
}
#title-container {
    display: flex;
    align-items: center
    margin-bottom:10px;
    justify-content: center;
}
#title-icon {
    width: 32px;
    height: auto;
    margin-right: 10px;
}
#title-text {
    font-size: 30px;
    font-weight: bold;
    color: #000;
}
"""





# Create Gradio interface
def create_ui():
    with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as ui:
        gr.Markdown("## Flux Uncensored - Text to Image Generator")
        
        with gr.Row():
            prompt_input = gr.Textbox(label="Enter a Prompt", placeholder="Describe the image you want to generate", lines=3)
            generate_button = gr.Button("Generate Image")
        
        with gr.Row():
            output_image = gr.Image(label="Generated Image")
        
        # Link the button to the function
        generate_button.click(fn=generate_image, inputs=prompt_input, outputs=output_image)
    
    return ui

# Run the interface
if __name__ == "__main__":
    create_ui().launch()