import torch from diffusers import AnimateDiffSparseControlNetPipeline from diffusers.models import AutoencoderKL, MotionAdapter, SparseControlNetModel from diffusers.schedulers import DPMSolverMultistepScheduler from diffusers.utils import export_to_gif, load_image torch.backends.cuda.matmul.allow_tf32 = True # Enable TF32 for speed device = "cuda" dtype = torch.float16 # Model IDs model_id = "SG161222/Realistic_Vision_V5.1_noVAE" motion_adapter_id = "guoyww/animatediff-motion-adapter-v1-5-3" controlnet_id = "guoyww/animatediff-sparsectrl-scribble" lora_adapter_id = "guoyww/animatediff-motion-lora-v1-5-3" vae_id = "stabilityai/sd-vae-ft-mse" # Load models to device once motion_adapter = MotionAdapter.from_pretrained(motion_adapter_id, torch_dtype=dtype, device_map="auto") controlnet = SparseControlNetModel.from_pretrained(controlnet_id, torch_dtype=dtype, device_map="auto") vae = AutoencoderKL.from_pretrained(vae_id, torch_dtype=dtype, device_map="auto") # Use DPMSolverMultistepScheduler with optimizations scheduler = DPMSolverMultistepScheduler.from_pretrained( model_id, subfolder="scheduler", beta_schedule="linear", algorithm_type="dpmsolver++", use_karras_sigmas=True, ) pipe = AnimateDiffSparseControlNetPipeline.from_pretrained( model_id, motion_adapter=motion_adapter, controlnet=controlnet, vae=vae, scheduler=scheduler, torch_dtype=dtype, ).to(device) # Enable memory optimizations pipe.enable_xformers_memory_efficient_attention() pipe.load_lora_weights(lora_adapter_id, adapter_name="motion_lora") pipe.fuse_lora(lora_scale=1.0) # Preload conditioning frames image_files = [ "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-1.png", "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-2.png", "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-scribble-3.png" ] condition_frame_indices = [0, 8, 15] conditioning_frames = [load_image(img) for img in image_files] # Generator for reproducibility generator = torch.Generator(device).manual_seed(1337) # Inference with memory optimizations with torch.inference_mode(): video = pipe( prompt="an aerial view of a cyberpunk city, night time, neon lights, masterpiece, high quality", negative_prompt="low quality, worst quality, letterboxed", num_inference_steps=25, conditioning_frames=conditioning_frames, controlnet_conditioning_scale=1.0, controlnet_frame_indices=condition_frame_indices, generator=generator, ).frames[0] export_to_gif(video, "output.gif") # Free memory del pipe, motion_adapter, controlnet, vae torch.cuda.empty_cache()