Update poweredimg2vid.py
Browse files- poweredimg2vid.py +365 -0
poweredimg2vid.py
CHANGED
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import base64
|
3 |
+
import io
|
4 |
+
import requests
|
5 |
+
from typing import Dict, Any, Optional, List
|
6 |
+
from PIL import Image
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
class AIImageVideoPipeline:
|
10 |
+
"""
|
11 |
+
Comprehensive AI-powered Image-to-Video Generation Pipeline
|
12 |
+
|
13 |
+
## Workflow Stages
|
14 |
+
1. Initial Image Generation
|
15 |
+
2. Iterative Outpainting
|
16 |
+
3. LTX Video Transformation
|
17 |
+
|
18 |
+
## Technical Architecture
|
19 |
+
- Modular design with configurable components
|
20 |
+
- Support for multiple AI inference endpoints
|
21 |
+
- Robust error handling and logging
|
22 |
+
"""
|
23 |
+
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
image_generation_endpoint: Optional[str] = None,
|
27 |
+
outpainting_endpoint: Optional[str] = None,
|
28 |
+
ltx_video_endpoint: Optional[str] = None,
|
29 |
+
api_token: Optional[str] = None
|
30 |
+
):
|
31 |
+
"""
|
32 |
+
Initialize the AI Image-to-Video pipeline.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
image_generation_endpoint (str): Endpoint for initial image generation
|
36 |
+
outpainting_endpoint (str): Endpoint for image outpainting
|
37 |
+
ltx_video_endpoint (str): Endpoint for LTX video generation
|
38 |
+
api_token (str): Authentication token for API calls
|
39 |
+
"""
|
40 |
+
self.endpoints = {
|
41 |
+
'image_gen': image_generation_endpoint or os.getenv('IMAGE_GEN_ENDPOINT'),
|
42 |
+
'outpainting': outpainting_endpoint or os.getenv('OUTPAINTING_ENDPOINT'),
|
43 |
+
'ltx_video': ltx_video_endpoint or os.getenv('LTX_VIDEO_ENDPOINT')
|
44 |
+
}
|
45 |
+
self.api_token = api_token or os.getenv('HF_API_TOKEN')
|
46 |
+
|
47 |
+
# Validate endpoint configuration
|
48 |
+
self._validate_endpoints()
|
49 |
+
|
50 |
+
def _validate_endpoints(self):
|
51 |
+
"""
|
52 |
+
Validate configured API endpoints.
|
53 |
+
|
54 |
+
Raises:
|
55 |
+
ValueError: If any required endpoint is missing
|
56 |
+
"""
|
57 |
+
missing_endpoints = [
|
58 |
+
key for key, value in self.endpoints.items()
|
59 |
+
if not value
|
60 |
+
]
|
61 |
+
|
62 |
+
if missing_endpoints:
|
63 |
+
raise ValueError(
|
64 |
+
f"Missing API endpoints: {', '.join(missing_endpoints)}. "
|
65 |
+
"Please configure via parameters or environment variables."
|
66 |
+
)
|
67 |
+
|
68 |
+
def encode_image(
|
69 |
+
self,
|
70 |
+
image: Image.Image,
|
71 |
+
format: str = 'JPEG'
|
72 |
+
) -> str:
|
73 |
+
"""
|
74 |
+
Encode PIL Image to base64 data URI.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
image (Image.Image): Input image
|
78 |
+
format (str): Output image format
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
str: Base64 encoded data URI
|
82 |
+
"""
|
83 |
+
img_byte_arr = io.BytesIO()
|
84 |
+
image.save(img_byte_arr, format=format)
|
85 |
+
base64_encoded = base64.b64encode(img_byte_arr.getvalue()).decode('utf-8')
|
86 |
+
return f"data:image/{format.lower()};base64,{base64_encoded}"
|
87 |
+
|
88 |
+
def generate_initial_image(
|
89 |
+
self,
|
90 |
+
prompt: str,
|
91 |
+
width: int = 768,
|
92 |
+
height: int = 480
|
93 |
+
) -> Image.Image:
|
94 |
+
"""
|
95 |
+
Generate initial image using text prompt.
|
96 |
+
|
97 |
+
Args:
|
98 |
+
prompt (str): Image generation prompt
|
99 |
+
width (int): Image width
|
100 |
+
height (int): Image height
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
Image.Image: Generated image
|
104 |
+
"""
|
105 |
+
payload = {
|
106 |
+
"inputs": prompt,
|
107 |
+
"parameters": {
|
108 |
+
"width": width,
|
109 |
+
"height": height
|
110 |
+
}
|
111 |
+
}
|
112 |
+
|
113 |
+
response = self._make_api_call(
|
114 |
+
self.endpoints['image_gen'],
|
115 |
+
payload
|
116 |
+
)
|
117 |
+
|
118 |
+
return self._decode_image_response(response)
|
119 |
+
|
120 |
+
def iterative_outpainting(
|
121 |
+
self,
|
122 |
+
image: Image.Image,
|
123 |
+
prompt: str,
|
124 |
+
iterations: int = 3,
|
125 |
+
padding_size: int = 256
|
126 |
+
) -> Image.Image:
|
127 |
+
"""
|
128 |
+
Perform iterative outpainting to expand image.
|
129 |
+
|
130 |
+
Args:
|
131 |
+
image (Image.Image): Starting image
|
132 |
+
prompt (str): Outpainting generation prompt
|
133 |
+
iterations (int): Number of outpainting steps
|
134 |
+
padding_size (int): Padding size for each iteration
|
135 |
+
|
136 |
+
Returns:
|
137 |
+
Image.Image: Final outpainted image
|
138 |
+
"""
|
139 |
+
current_image = image.copy()
|
140 |
+
|
141 |
+
for _ in range(iterations):
|
142 |
+
# Create padded image
|
143 |
+
padded_size = (
|
144 |
+
current_image.width + 2 * padding_size,
|
145 |
+
current_image.height + 2 * padding_size
|
146 |
+
)
|
147 |
+
padded_image = Image.new('RGBA', padded_size, (0, 0, 0, 0))
|
148 |
+
padded_image.paste(
|
149 |
+
current_image,
|
150 |
+
(padding_size, padding_size)
|
151 |
+
)
|
152 |
+
|
153 |
+
# Create mask for padding regions
|
154 |
+
mask = self._create_padding_mask(padded_image, padding_size)
|
155 |
+
|
156 |
+
# Outpainting request
|
157 |
+
payload = {
|
158 |
+
"inputs": prompt,
|
159 |
+
"image": self.encode_image(padded_image),
|
160 |
+
"mask_image": self.encode_image(mask)
|
161 |
+
}
|
162 |
+
|
163 |
+
response = self._make_api_call(
|
164 |
+
self.endpoints['outpainting'],
|
165 |
+
payload
|
166 |
+
)
|
167 |
+
|
168 |
+
current_image = self._decode_image_response(response)
|
169 |
+
|
170 |
+
return current_image
|
171 |
+
|
172 |
+
def _create_padding_mask(
|
173 |
+
self,
|
174 |
+
image: Image.Image,
|
175 |
+
padding_size: int
|
176 |
+
) -> Image.Image:
|
177 |
+
"""
|
178 |
+
Generate a mask indicating padding regions.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
image (Image.Image): Source image
|
182 |
+
padding_size (int): Size of padding
|
183 |
+
|
184 |
+
Returns:
|
185 |
+
Image.Image: Mask image
|
186 |
+
"""
|
187 |
+
mask = Image.new('L', image.size, 0)
|
188 |
+
mask_array = np.array(mask)
|
189 |
+
|
190 |
+
# Mark padding regions white (255)
|
191 |
+
mask_array[:padding_size, :] = 255 # Top
|
192 |
+
mask_array[-padding_size:, :] = 255 # Bottom
|
193 |
+
mask_array[:, :padding_size] = 255 # Left
|
194 |
+
mask_array[:, -padding_size:] = 255 # Right
|
195 |
+
|
196 |
+
return Image.fromarray(mask_array)
|
197 |
+
|
198 |
+
def generate_ltx_video(
|
199 |
+
self,
|
200 |
+
image: Image.Image,
|
201 |
+
prompt: str = "",
|
202 |
+
video_config: Optional[Dict[str, Any]] = None
|
203 |
+
) -> Dict[str, Any]:
|
204 |
+
"""
|
205 |
+
Generate video using LTX video generation API.
|
206 |
+
|
207 |
+
Args:
|
208 |
+
image (Image.Image): Input image
|
209 |
+
prompt (str, optional): Optional video generation prompt
|
210 |
+
video_config (Dict, optional): Custom video generation parameters
|
211 |
+
|
212 |
+
Returns:
|
213 |
+
Dict: API response containing video generation details
|
214 |
+
"""
|
215 |
+
default_config = {
|
216 |
+
"width": 768,
|
217 |
+
"height": 480,
|
218 |
+
"num_frames": 129, # 8*16 + 1
|
219 |
+
"num_inference_steps": 50,
|
220 |
+
"guidance_scale": 4.0,
|
221 |
+
"double_num_frames": True,
|
222 |
+
"fps": 60,
|
223 |
+
"super_resolution": True,
|
224 |
+
"grain_amount": 12
|
225 |
+
}
|
226 |
+
|
227 |
+
# Merge default and custom configurations
|
228 |
+
config = {**default_config, **(video_config or {})}
|
229 |
+
|
230 |
+
payload = {
|
231 |
+
"inputs": {
|
232 |
+
"image": self.encode_image(image),
|
233 |
+
"prompt": prompt
|
234 |
+
},
|
235 |
+
"parameters": config
|
236 |
+
}
|
237 |
+
|
238 |
+
return self._make_api_call(
|
239 |
+
self.endpoints['ltx_video'],
|
240 |
+
payload
|
241 |
+
)
|
242 |
+
|
243 |
+
def _make_api_call(
|
244 |
+
self,
|
245 |
+
endpoint: str,
|
246 |
+
payload: Dict[str, Any]
|
247 |
+
) -> Dict[str, Any]:
|
248 |
+
"""
|
249 |
+
Execute API request with error handling.
|
250 |
+
|
251 |
+
Args:
|
252 |
+
endpoint (str): API endpoint URL
|
253 |
+
payload (Dict): Request payload
|
254 |
+
|
255 |
+
Returns:
|
256 |
+
Dict: API response
|
257 |
+
"""
|
258 |
+
headers = {
|
259 |
+
"Authorization": f"Bearer {self.api_token}",
|
260 |
+
"Content-Type": "application/json",
|
261 |
+
"Accept": "application/json"
|
262 |
+
}
|
263 |
+
|
264 |
+
try:
|
265 |
+
response = requests.post(
|
266 |
+
endpoint,
|
267 |
+
headers=headers,
|
268 |
+
json=payload
|
269 |
+
)
|
270 |
+
response.raise_for_status()
|
271 |
+
return response.json()
|
272 |
+
|
273 |
+
except requests.RequestException as e:
|
274 |
+
raise RuntimeError(f"API call failed: {e}")
|
275 |
+
|
276 |
+
def _decode_image_response(
|
277 |
+
self,
|
278 |
+
response: Dict[str, Any]
|
279 |
+
) -> Image.Image:
|
280 |
+
"""
|
281 |
+
Decode image from API response.
|
282 |
+
|
283 |
+
Args:
|
284 |
+
response (Dict): API response
|
285 |
+
|
286 |
+
Returns:
|
287 |
+
Image.Image: Decoded image
|
288 |
+
"""
|
289 |
+
if 'image' not in response:
|
290 |
+
raise ValueError("No image found in API response")
|
291 |
+
|
292 |
+
image_data = response['image'].split(",")[1]
|
293 |
+
image_bytes = base64.b64decode(image_data)
|
294 |
+
return Image.open(io.BytesIO(image_bytes))
|
295 |
+
|
296 |
+
def full_pipeline(
|
297 |
+
self,
|
298 |
+
initial_prompt: str,
|
299 |
+
outpainting_prompt: Optional[str] = None,
|
300 |
+
video_prompt: Optional[str] = None
|
301 |
+
) -> Dict[str, Any]:
|
302 |
+
"""
|
303 |
+
Execute complete image-to-video pipeline.
|
304 |
+
|
305 |
+
Args:
|
306 |
+
initial_prompt (str): Prompt for initial image generation
|
307 |
+
outpainting_prompt (str, optional): Prompt for image expansion
|
308 |
+
video_prompt (str, optional): Prompt for video generation
|
309 |
+
|
310 |
+
Returns:
|
311 |
+
Dict: Pipeline execution results
|
312 |
+
"""
|
313 |
+
# 1. Generate Initial Image
|
314 |
+
initial_image = self.generate_initial_image(initial_prompt)
|
315 |
+
|
316 |
+
# 2. Outpainting (optional)
|
317 |
+
if outpainting_prompt:
|
318 |
+
expanded_image = self.iterative_outpainting(
|
319 |
+
initial_image,
|
320 |
+
outpainting_prompt
|
321 |
+
)
|
322 |
+
else:
|
323 |
+
expanded_image = initial_image
|
324 |
+
|
325 |
+
# 3. Video Generation
|
326 |
+
video_response = self.generate_ltx_video(
|
327 |
+
expanded_image,
|
328 |
+
video_prompt
|
329 |
+
)
|
330 |
+
|
331 |
+
return {
|
332 |
+
"initial_image": initial_image,
|
333 |
+
"expanded_image": expanded_image,
|
334 |
+
"video_response": video_response
|
335 |
+
}
|
336 |
+
|
337 |
+
def main():
|
338 |
+
"""
|
339 |
+
Demonstration of full AI Image-to-Video pipeline.
|
340 |
+
"""
|
341 |
+
pipeline = AIImageVideoPipeline(
|
342 |
+
image_generation_endpoint="YOUR_IMAGE_GEN_ENDPOINT",
|
343 |
+
outpainting_endpoint="YOUR_OUTPAINTING_ENDPOINT",
|
344 |
+
ltx_video_endpoint="YOUR_LTX_VIDEO_ENDPOINT",
|
345 |
+
api_token="YOUR_HF_API_TOKEN"
|
346 |
+
)
|
347 |
+
|
348 |
+
try:
|
349 |
+
result = pipeline.full_pipeline(
|
350 |
+
initial_prompt="Serene landscape with mountains and a lake",
|
351 |
+
outpainting_prompt="Expand the scene with more natural elements",
|
352 |
+
video_prompt="Smooth camera pan across the landscape"
|
353 |
+
)
|
354 |
+
|
355 |
+
# Save images and process video
|
356 |
+
result['initial_image'].save("initial_image.png")
|
357 |
+
result['expanded_image'].save("expanded_image.png")
|
358 |
+
|
359 |
+
print("Pipeline execution completed successfully!")
|
360 |
+
|
361 |
+
except Exception as e:
|
362 |
+
print(f"Pipeline execution failed: {e}")
|
363 |
+
|
364 |
+
if __name__ == "__main__":
|
365 |
+
main()
|