Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import gradio as gr
|
3 |
+
from langchain.vectorstores import FAISS
|
4 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
+
from langchain.schema import Document
|
6 |
+
|
7 |
+
# Initialize once when the app starts
|
8 |
+
def initialize_system():
|
9 |
+
# Load dataset
|
10 |
+
data = pd.read_csv("qa_dataset.csv")
|
11 |
+
|
12 |
+
# Create documents
|
13 |
+
documents = [
|
14 |
+
Document(
|
15 |
+
page_content=f"Q: {row['Question']}\nA: {row['Answer']}",
|
16 |
+
metadata={"question": row['Question'], "answer": row['Answer']}
|
17 |
+
) for _, row in data.iterrows()
|
18 |
+
]
|
19 |
+
|
20 |
+
# Create vector store
|
21 |
+
embeddings = HuggingFaceEmbeddings(
|
22 |
+
model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
23 |
+
)
|
24 |
+
|
25 |
+
return FAISS.from_documents(documents, embeddings)
|
26 |
+
|
27 |
+
vector_store = initialize_system()
|
28 |
+
|
29 |
+
def classify_question(query: str, k: int = 3):
|
30 |
+
# Retrieve similar Q&A pairs
|
31 |
+
results = vector_store.similarity_search(query, k=k)
|
32 |
+
|
33 |
+
# Generate category from answers
|
34 |
+
answers = " ".join([doc.metadata['answer'] for doc in results])
|
35 |
+
keywords = list(dict.fromkeys(answers.split()))[:5]
|
36 |
+
category = " ".join(keywords)
|
37 |
+
|
38 |
+
# Format output
|
39 |
+
return {
|
40 |
+
"Category": category,
|
41 |
+
"Top Matches": "\n\n".join([f"Q: {doc.metadata['question']}\nA: {doc.metadata['answer']}"
|
42 |
+
for doc in results]),
|
43 |
+
"Confidence": f"{len(results)/k:.0%}"
|
44 |
+
}
|
45 |
+
|
46 |
+
# Gradio interface
|
47 |
+
interface = gr.Interface(
|
48 |
+
fn=lambda q: classify_question(q, 3),
|
49 |
+
inputs=gr.Textbox(label="Input Question", placeholder="Type your question here..."),
|
50 |
+
outputs=[
|
51 |
+
gr.Textbox(label="Predicted Category"),
|
52 |
+
gr.Textbox(label="Supporting Q&A"),
|
53 |
+
gr.Textbox(label="Confidence")
|
54 |
+
],
|
55 |
+
title="Question Classification System",
|
56 |
+
description="Classify questions based on existing Q&A pairs using RAG"
|
57 |
+
)
|
58 |
+
|
59 |
+
if __name__ == "__main__":
|
60 |
+
interface.launch()
|