Spaces:
Runtime error
Runtime error
File size: 11,455 Bytes
eadd7b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import argparse
import sys
from pathlib import Path
current_file_path = Path(__file__).resolve()
sys.path.insert(0, str(current_file_path.parent.parent))
import os
import random
import torch
from torchvision.utils import save_image
from diffusion import IDDPM, DPMS, SASolverSampler
from diffusers.models import AutoencoderKL
from tools.download import find_model
from datetime import datetime
from typing import List, Union
import gradio as gr
import numpy as np
from gradio.components import Textbox, Image
from transformers import T5EncoderModel, T5Tokenizer
import gc
from diffusion.model.t5 import T5Embedder
from diffusion.model.utils import prepare_prompt_ar, resize_and_crop_tensor
from diffusion.model.nets import PixArtMS_XL_2, PixArt_XL_2
from torchvision.utils import _log_api_usage_once, make_grid
from diffusion.data.datasets.utils import *
from asset.examples import examples
from diffusion.utils.dist_utils import flush
MAX_SEED = np.iinfo(np.int32).max
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--image_size', default=1024, type=int)
parser.add_argument('--version', default='sigma', type=str)
parser.add_argument('--model_path', default='output/pretrained_models/PixArt-XL-2-1024-MS.pth', type=str)
parser.add_argument('--sdvae', action='store_true', help='sd vae')
parser.add_argument(
"--pipeline_load_from", default='output/pretrained_models/pixart_sigma_sdxlvae_T5_diffusers',
type=str, help="Download for loading text_encoder, "
"tokenizer and vae from https://huggingface.co/PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers"
)
parser.add_argument('--port', default=7788, type=int)
return parser.parse_args()
@torch.no_grad()
def ndarr_image(tensor: Union[torch.Tensor, List[torch.Tensor]], **kwargs,) -> None:
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(save_image)
grid = make_grid(tensor, **kwargs)
# Add 0.5 after unnormalizing to [0, 255] to round to the nearest integer
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
return ndarr
def set_env(seed=0):
torch.manual_seed(seed)
torch.set_grad_enabled(False)
for _ in range(30):
torch.randn(1, 4, args.image_size, args.image_size)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@torch.inference_mode()
def generate_img(prompt, sampler, sample_steps, scale, seed=0, randomize_seed=False):
flush()
gc.collect()
torch.cuda.empty_cache()
seed = int(randomize_seed_fn(seed, randomize_seed))
set_env(seed)
os.makedirs(f'output/demo/online_demo_prompts/', exist_ok=True)
save_promt_path = f'output/demo/online_demo_prompts/tested_prompts{datetime.now().date()}.txt'
with open(save_promt_path, 'a') as f:
f.write(prompt + '\n')
print(prompt)
prompt_clean, prompt_show, hw, ar, custom_hw = prepare_prompt_ar(prompt, base_ratios, device=device) # ar for aspect ratio
prompt_clean = prompt_clean.strip()
if isinstance(prompt_clean, str):
prompts = [prompt_clean]
caption_token = tokenizer(prompts, max_length=max_sequence_length, padding="max_length", truncation=True, return_tensors="pt").to(device)
caption_embs = text_encoder(caption_token.input_ids, attention_mask=caption_token.attention_mask)[0]
emb_masks = caption_token.attention_mask
caption_embs = caption_embs[:, None]
null_y = null_caption_embs.repeat(len(prompts), 1, 1)[:, None]
latent_size_h, latent_size_w = int(hw[0, 0]//8), int(hw[0, 1]//8)
# Sample images:
if sampler == 'iddpm':
# Create sampling noise:
n = len(prompts)
z = torch.randn(n, 4, latent_size_h, latent_size_w, device=device).repeat(2, 1, 1, 1)
model_kwargs = dict(y=torch.cat([caption_embs, null_y]),
cfg_scale=scale, data_info={'img_hw': hw, 'aspect_ratio': ar}, mask=emb_masks)
diffusion = IDDPM(str(sample_steps))
samples = diffusion.p_sample_loop(
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True,
device=device
)
samples, _ = samples.chunk(2, dim=0) # Remove null class samples
elif sampler == 'dpm-solver':
# Create sampling noise:
n = len(prompts)
z = torch.randn(n, 4, latent_size_h, latent_size_w, device=device)
model_kwargs = dict(data_info={'img_hw': hw, 'aspect_ratio': ar}, mask=emb_masks)
dpm_solver = DPMS(model.forward_with_dpmsolver,
condition=caption_embs,
uncondition=null_y,
cfg_scale=scale,
model_kwargs=model_kwargs)
samples = dpm_solver.sample(
z,
steps=sample_steps,
order=2,
skip_type="time_uniform",
method="multistep",
)
elif sampler == 'sa-solver':
# Create sampling noise:
n = len(prompts)
model_kwargs = dict(data_info={'img_hw': hw, 'aspect_ratio': ar}, mask=emb_masks)
sa_solver = SASolverSampler(model.forward_with_dpmsolver, device=device)
samples = sa_solver.sample(
S=sample_steps,
batch_size=n,
shape=(4, latent_size_h, latent_size_w),
eta=1,
conditioning=caption_embs,
unconditional_conditioning=null_y,
unconditional_guidance_scale=scale,
model_kwargs=model_kwargs,
)[0]
samples = samples.to(weight_dtype)
samples = vae.decode(samples / vae.config.scaling_factor).sample
samples = resize_and_crop_tensor(samples, custom_hw[0,1], custom_hw[0,0])
display_model_info = f'Model path: {args.model_path},\nBase image size: {args.image_size}, \nSampling Algo: {sampler}'
return ndarr_image(samples, normalize=True, value_range=(-1, 1)), prompt_show, display_model_info, seed
if __name__ == '__main__':
from diffusion.utils.logger import get_root_logger
args = get_args()
device = "cuda" if torch.cuda.is_available() else "cpu"
logger = get_root_logger()
assert args.image_size in [256, 512, 1024, 2048], \
"We only provide pre-trained models for 256x256, 512x512, 1024x1024 and 2048x2048 resolutions."
pe_interpolation = {256: 0.5, 512: 1, 1024: 2, 2048: 4}
latent_size = args.image_size // 8
max_sequence_length = {"alpha": 120, "sigma": 300}[args.version]
weight_dtype = torch.float16
micro_condition = True if args.version == 'alpha' and args.image_size == 1024 else False
if args.image_size in [512, 1024, 2048, 2880]:
model = PixArtMS_XL_2(
input_size=latent_size,
pe_interpolation=pe_interpolation[args.image_size],
micro_condition=micro_condition,
model_max_length=max_sequence_length,
).to(device)
else:
model = PixArt_XL_2(
input_size=latent_size,
pe_interpolation=pe_interpolation[args.image_size],
model_max_length=max_sequence_length,
).to(device)
state_dict = find_model(args.model_path)
if 'pos_embed' in state_dict['state_dict']:
del state_dict['state_dict']['pos_embed']
missing, unexpected = model.load_state_dict(state_dict['state_dict'], strict=False)
logger.warning(f'Missing keys: {missing}')
logger.warning(f'Unexpected keys: {unexpected}')
model.to(weight_dtype)
model.eval()
base_ratios = eval(f'ASPECT_RATIO_{args.image_size}_TEST')
if args.sdvae:
# pixart-alpha vae link: https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/sd-vae-ft-ema
vae = AutoencoderKL.from_pretrained("output/pretrained_models/sd-vae-ft-ema").to(device).to(weight_dtype)
else:
# pixart-Sigma vae link: https://huggingface.co/PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers/tree/main/vae
vae = AutoencoderKL.from_pretrained(f"{args.pipeline_load_from}/vae").to(device).to(weight_dtype)
tokenizer = T5Tokenizer.from_pretrained(args.pipeline_load_from, subfolder="tokenizer")
text_encoder = T5EncoderModel.from_pretrained(args.pipeline_load_from, subfolder="text_encoder").to(device)
null_caption_token = tokenizer("", max_length=max_sequence_length, padding="max_length", truncation=True, return_tensors="pt").to(device)
null_caption_embs = text_encoder(null_caption_token.input_ids, attention_mask=null_caption_token.attention_mask)[0]
title = f"""
'' Unleashing your Creativity \n ''
<div style='display: flex; align-items: center; justify-content: center; text-align: center;'>
<img src='https://raw.githubusercontent.com/PixArt-alpha/PixArt-sigma-project/master/static/images/logo-sigma.png' style='width: 400px; height: auto; margin-right: 10px;' />
{args.image_size}px
</div>
"""
DESCRIPTION = f"""# PixArt-Sigma {args.image_size}px
## If PixArt-Sigma is helpful, please help to ⭐ the [Github Repo](https://github.com/PixArt-alpha/PixArt-sigma) and recommend it to your friends ��'
#### [PixArt-Sigma {args.image_size}px](https://github.com/PixArt-alpha/PixArt-sigma) is a transformer-based text-to-image diffusion system trained on text embeddings from T5. This demo uses the [PixArt-Sigma](https://huggingface.co/PixArt-alpha/PixArt-Sigma) checkpoint.
#### English prompts ONLY; 提示词仅限英文
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU �� This demo does not work on CPU.</p>"
demo = gr.Interface(
fn=generate_img,
inputs=[Textbox(label="Note: If you want to specify a aspect ratio or determine a customized height and width, "
"use --ar h:w (or --aspect_ratio h:w) or --hw h:w. If no aspect ratio or hw is given, all setting will be default.",
placeholder="Please enter your prompt. \n"),
gr.Radio(
choices=["iddpm", "dpm-solver", "sa-solver"],
label=f"Sampler",
interactive=True,
value='dpm-solver',
),
gr.Slider(
label='Sample Steps',
minimum=1,
maximum=100,
value=14,
step=1
),
gr.Slider(
label='Guidance Scale',
minimum=0.1,
maximum=30.0,
value=4.5,
step=0.1
),
gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
),
gr.Checkbox(label="Randomize seed", value=True),
],
outputs=[Image(type="numpy", label="Img"),
Textbox(label="clean prompt"),
Textbox(label="model info"),
gr.Slider(label='seed')],
title=title,
description=DESCRIPTION,
examples=examples
)
demo.launch(server_name="0.0.0.0", server_port=args.port, debug=True) |