Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
import clipGPT | |
import vitGPT | |
import skimage.io as io | |
import PIL.Image | |
import difflib | |
import ViTCoAtt | |
from build_vocab import Vocabulary | |
# Caption generation functions | |
def generate_caption_clipgpt(image, max_tokens, temperature): | |
caption = clipGPT.generate_caption_clipgpt(image, max_tokens, temperature) | |
return caption | |
def generate_caption_vitgpt(image, max_tokens, temperature): | |
caption = vitGPT.generate_caption(image, max_tokens, temperature) | |
return caption | |
def generate_caption_vitCoAtt(image): | |
caption = ViTCoAtt.CaptionSampler.main(image) | |
return caption | |
gr.HTML("<h1 style='text-align: center;'>MedViT: A Vision Transformer-Driven Method for Generating Medical Reports π₯π€</h1>") | |
gr.HTML("<p style='text-align: center;'>You can generate captions by uploading an X-Ray and selecting a model of your choice below</p>") | |
with gr.Row(): | |
image = gr.Image(label="Upload Chest X-ray", type="pil") | |
gr.HTML("<p style='text-align: center;'> Please select the Number of Max Tokens and Temperature setting, if you are testing CLIP GPT2 and VIT GPT2 Models</p>") | |
with gr.Row(): | |
with gr.Column(): # Column for dropdowns and model choice | |
max_tokens = gr.Dropdown(list(range(50, 101)), label="Max Tokens", value=75) | |
temperature = gr.Slider(0.5, 0.9, step=0.1, label="Temperature", value=0.7) | |
model_choice = gr.Radio(["CLIP-GPT2", "ViT-GPT2", "ViT-CoAttention"], label="Select Model") | |
generate_button = gr.Button("Generate Caption") | |
caption = gr.Textbox(label="Generated Caption") | |
def predict(img, model_name, max_tokens, temperature): | |
if model_name == "CLIP-GPT2": | |
return generate_caption_clipgpt(img, max_tokens, temperature) | |
elif model_name == "ViT-GPT2": | |
return generate_caption_vitgpt(img, max_tokens, temperature) | |
elif model_name == "ViT-CoAttention": | |
return generate_caption_vitCoAtt(img) | |
else: | |
return "Caption generation for this model is not yet implemented." | |
examples = [f"example{i}.png" for i in range(1,3)] | |
interface = gr.Interface( | |
fn=predict, | |
inputs = [image, model_choice, max_tokens, temperature], | |
theme="gradio/monochrome", | |
outputs=caption, | |
examples = examples | |
) | |
interface.launch(debug=True) | |