File size: 6,149 Bytes
afda258
 
 
 
 
3f69f5c
 
 
 
 
afda258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from transformers import AutoTokenizer, AutoModel
import clip
import skimage.io as io
import PIL.Image

import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torch.nn import functional as F

import pandas as pd
import numpy as np
import time
import json
import nltk
nltk.download('punkt')


class ClipGPT2Model(nn.Module):
    def __init__(self, img_feature_length, img_feature_size = 512):
        super(ClipGPT2Model, self).__init__()
        torch.cuda.empty_cache()
        gc.collect()
        self.img_feature_length = img_feature_length

        self.gpt = GPT2LMHeadModel.from_pretrained('gpt2')
        self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
        self.clip_project = Adapter((img_feature_size,
                                       (self.gpt_embedding_size * img_feature_length) // 2,
                                       self.gpt_embedding_size * img_feature_length))
        torch.cuda.empty_cache()
    def get_dummy_token(self,
                        batch_size: int,
                        device: torch.device) -> torch.Tensor:
        return torch.zeros(batch_size, self.img_feature_length, dtype=torch.int64, device=device)

    def forward(self,
                tokens: torch.Tensor,
                feature: torch.Tensor,
                mask = None,
                labels = None):
        torch.cuda.empty_cache()
        gc.collect()

        embedding_text = self.gpt.transformer.wte(tokens)
        feature_projections = self.clip_project(feature).view(-1, self.img_feature_length, self.gpt_embedding_size)
        embedding_cat = torch.cat((feature_projections, embedding_text), dim=1)
        if labels is not None:
            dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device)
            labels = torch.cat((dummy_token, tokens), dim=1)
        out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask)
        return out

        


def generate_beam(
    model,
    tokenizer,
    beam_size: int = 10,
    prompt=None,
    embed=None,
    entry_length=76,
    temperature=0.9,
    stop_token: str = ".",
):

    model.eval()
    stop_token_index = tokenizer.encode(stop_token)[0]
    tokens = None
    scores = None
    device = next(model.parameters()).device
    seq_lengths = torch.ones(beam_size, device=device)
    is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool)
    with torch.no_grad():
        if embed is not None:
            generated = embed
        else:
            if tokens is None:
                tokens = torch.tensor(tokenizer.encode(prompt))
                tokens = tokens.unsqueeze(0).to(device)
                generated = model.gpt.transformer.wte(tokens)
        for i in range(entry_length):
            outputs = model.gpt(inputs_embeds=generated)
            logits = outputs.logits
            logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
            logits = logits.softmax(-1).log()
            if scores is None:
                scores, next_tokens = logits.topk(beam_size, -1)
                generated = generated.expand(beam_size, *generated.shape[1:])
                next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0)
                if tokens is None:
                    tokens = next_tokens
                else:
                    tokens = tokens.expand(beam_size, *tokens.shape[1:])
                    tokens = torch.cat((tokens, next_tokens), dim=1)
            else:
                logits[is_stopped] = -float(np.inf)
                logits[is_stopped, 0] = 0
                scores_sum = scores[:, None] + logits
                seq_lengths[~is_stopped] += 1
                scores_sum_average = scores_sum / seq_lengths[:, None]
                scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(
                    beam_size, -1
                )
                next_tokens_source = next_tokens // scores_sum.shape[1]
                seq_lengths = seq_lengths[next_tokens_source]
                next_tokens = next_tokens % scores_sum.shape[1]
                next_tokens = next_tokens.unsqueeze(1)
                tokens = tokens[next_tokens_source]
                tokens = torch.cat((tokens, next_tokens), dim=1)
                generated = generated[next_tokens_source]
                scores = scores_sum_average * seq_lengths
                is_stopped = is_stopped[next_tokens_source]
            next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(
                generated.shape[0], 1, -1
            )
            generated = torch.cat((generated, next_token_embed), dim=1)
            is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze()
            if is_stopped.all():
                break
    scores = scores / seq_lengths
    output_list = tokens.cpu().numpy()
    output_texts = [
        tokenizer.decode(output[: int(length)])
        for output, length in zip(output_list, seq_lengths)
    ]
    order = scores.argsort(descending=True)
    output_texts = [output_texts[i] for i in order]
    return output_texts



def generate_caption_clipgpt(img):

    prefix_length = 10
    model = ClipGPT2Model(prefix_length, img_feature_size = feature_dim)
    model.load_state_dict(torch.load('model_train_best_run_clipGPT.pt'))
    model = model.eval()
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model = model.to(device)


    clip_model, preprocess = clip.load('ViT-B/32', device, jit=False)
    tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

    start_time = time.time()
    image = io.imread(img)
    pil_image = PIL.Image.fromarray(image)
    image = preprocess(pil_image).unsqueeze(0).to(device)

    with torch.no_grad():
        prefix = clip_model.encode_image(image).to(device, dtype=torch.float32)
        prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1)
        beam_caption = generate_beam(model, tokenizer, embed=prefix_embed)[0]

    end_time = time.time()
    print("--- Time taken to generate: %s seconds ---" % (end_time - start_time))

    return beam_caption