import gradio as gr from openai import OpenAI, APIError import os import tenacity import asyncio ACCESS_TOKEN = os.getenv("HF_TOKEN") client = OpenAI( base_url="https://api-inference.huggingface.co/v1/", api_key=ACCESS_TOKEN, ) # Retry logic with tenacity for handling API rate limits @tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10), stop=tenacity.stop_after_attempt(5)) async def respond( message, system_message, max_tokens, temperature, top_p, ): try: # Only use the system message and the current message for the response messages = [{"role": "system", "content": system_message}, {"role": "user", "content": message}] response = "" # Properly stream chat completions using dot notation stream = client.chat.completions.create( model="NousResearch/Hermes-3-Llama-3.1-8B", max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, messages=messages, ) # Stream response and concatenate tokens for chunk in stream: if hasattr(chunk.choices[0].delta, 'content'): token = chunk.choices[0].delta.content response += token return response except APIError as e: # Handle both string and dict types of error bodies error_details = e.body if isinstance(error_details, dict): error_type = error_details.get("type", "Unknown") error_code = error_details.get("code", "Unknown") error_param = error_details.get("param", "Unknown") error_message = error_details.get("message", "An error occurred.") error_str = f"{error_type}: {error_message} (code: {error_code}, param: {error_param})" else: error_str = f"Error: {error_details}" print(f"APIError: {error_str}") return error_str except Exception as e: print(f"Exception: {e}") return "Error occurred. Please try again." # Async Gradio function to handle user input and response generation without history async def generate_response(message, system_message, max_tokens, temperature, top_p): response = await respond(message, system_message, max_tokens, temperature, top_p) return response def launch_app(): try: demo = gr.Blocks() with demo: gr.Markdown("# Chatbot") message = gr.Textbox(label="Message") system_message = gr.Textbox(label="System message") max_tokens = gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens") temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P") response = gr.Text(label="Response") # Use the async version of generate_response without history gr.Button("Generate Response").click( generate_response, inputs=[message, system_message, max_tokens, temperature, top_p], outputs=[response], show_progress=False, ) demo.launch(show_error=True) except KeyError as e: print(f"Error: {e}") print("Please try again.") if __name__ == "__main__": launch_app()