import gradio as gr from huggingface_hub import InferenceClient # Initialize the InferenceClient with the model name # client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3") client = InferenceClient("meta-llama/Llama-3.3-70B-Instruct") def respond( message, history, system_message, max_tokens, temperature, top_p, ): # Create a list of messages with the system message and user input messages = [{"role": "system", "content": system_message}, {"role": "user", "content": message}] # Get the response from the model response = client.chat_completion( messages, max_tokens=max_tokens, stream=False, temperature=temperature, top_p=top_p, ) # Return the response return response.choices[0].message.content # Create a ChatInterface with the respond function and additional inputs demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()