File size: 11,609 Bytes
2852136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's TRL library.
# https://github.com/huggingface/trl/blob/v0.8.0/trl/trainer/dpo_trainer.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import warnings
from collections import defaultdict
from contextlib import nullcontext
from types import MethodType
from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union

import torch
import torch.nn.functional as F
from transformers import Trainer
from trl import DPOTrainer
from trl.trainer import disable_dropout_in_model

from ...extras.constants import IGNORE_INDEX
from ..trainer_utils import convert_pissa_adapter, create_custom_optimzer, create_custom_scheduler, get_batch_logps


if TYPE_CHECKING:
    from transformers import PreTrainedModel, ProcessorMixin

    from ...hparams import FinetuningArguments


class CustomDPOTrainer(DPOTrainer):
    def __init__(
        self,
        model: Union["PreTrainedModel", torch.nn.Module],
        ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]],
        finetuning_args: "FinetuningArguments",
        processor: Optional["ProcessorMixin"],
        disable_dropout: bool = True,
        **kwargs,
    ):
        if disable_dropout:
            disable_dropout_in_model(model)
            if ref_model is not None:
                disable_dropout_in_model(ref_model)

        self.finetuning_args = finetuning_args
        self.processor = processor
        self.reference_free = False
        self.use_dpo_data_collator = True  # hack to avoid warning
        self.generate_during_eval = False  # disable at evaluation
        self.label_pad_token_id = IGNORE_INDEX
        self.padding_value = 0
        self.is_encoder_decoder = model.config.is_encoder_decoder
        self.precompute_ref_log_probs = False
        self._precomputed_train_ref_log_probs = False
        self._precomputed_eval_ref_log_probs = False
        self._peft_has_been_casted_to_bf16 = False

        self.ref_model = ref_model
        self._stored_metrics = defaultdict(lambda: defaultdict(list))

        # dpo hyperparams
        self.beta = finetuning_args.pref_beta
        self.loss_type = finetuning_args.pref_loss
        self.ftx_gamma = finetuning_args.pref_ftx
        self.label_smoothing = finetuning_args.dpo_label_smoothing
        self.simpo_gamma = finetuning_args.simpo_gamma

        Trainer.__init__(self, model=model, **kwargs)
        if not hasattr(self, "accelerator"):
            raise AttributeError("Please update `transformers`.")

        warnings.simplefilter("ignore")  # remove gc warnings on ref model

        if ref_model is not None:
            if self.is_deepspeed_enabled:
                if not (
                    getattr(ref_model, "is_loaded_in_8bit", False) or getattr(ref_model, "is_loaded_in_4bit", False)
                ):  # quantized models are already set on the correct device
                    self.ref_model = self._prepare_deepspeed(self.ref_model)
            else:
                self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
                self.ref_model.eval()

        if finetuning_args.pissa_convert:
            self.save_model(os.path.join(self.args.output_dir, "pissa_init"))

        if finetuning_args.use_badam:
            from badam import clip_grad_norm_for_sparse_tensor

            self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)

    def create_optimizer(self) -> "torch.optim.Optimizer":
        if self.optimizer is None:
            self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
        return super().create_optimizer()

    def create_scheduler(
        self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
    ) -> "torch.optim.lr_scheduler.LRScheduler":
        create_custom_scheduler(self.args, num_training_steps, optimizer)
        return super().create_scheduler(num_training_steps, optimizer)

    def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
        super()._save(output_dir, state_dict)
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        if self.finetuning_args.pissa_convert:
            convert_pissa_adapter(output_dir, state_dict, self.accelerator, self.model, self.args)

        if self.processor is not None:
            getattr(self.processor, "image_processor").save_pretrained(output_dir)

    def odds_ratio_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor":
        r"""
        Computes ORPO's odds ratio (OR) loss for batched log probabilities of the policy model.
        """
        log_odds = (chosen_logps - rejected_logps) - (
            torch.log1p(-torch.exp(chosen_logps)) - torch.log1p(-torch.exp(rejected_logps))
        )
        sft_loss = -chosen_logps
        odds_ratio_loss = -F.logsigmoid(log_odds)
        orpo_loss = sft_loss + self.beta * odds_ratio_loss
        return orpo_loss

    def simpo_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor":
        r"""
        Computes SimPO loss for batched log probabilities of the policy model.
        """
        pi_logratios = chosen_logps - rejected_logps
        gamma_logratios = self.simpo_gamma / self.beta
        logits = pi_logratios - gamma_logratios
        simpo_loss = -F.logsigmoid(self.beta * logits)
        return simpo_loss

    def compute_preference_loss(
        self,
        policy_chosen_logps: "torch.Tensor",
        policy_rejected_logps: "torch.Tensor",
        reference_chosen_logps: Optional["torch.Tensor"],
        reference_rejected_logps: Optional["torch.Tensor"],
    ) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor"]:
        r"""
        Computes loss for preference learning.
        """
        if not self.finetuning_args.use_ref_model:
            if self.loss_type == "orpo":
                losses = self.odds_ratio_loss(policy_chosen_logps, policy_rejected_logps)
            elif self.loss_type == "simpo":
                losses = self.simpo_loss(policy_chosen_logps, policy_rejected_logps)
            else:
                raise NotImplementedError("Unknown loss type: {}.".format(self.loss_type))

            chosen_rewards = self.beta * policy_chosen_logps.to(self.accelerator.device).detach()
            rejected_rewards = self.beta * policy_rejected_logps.to(self.accelerator.device).detach()
        else:
            losses, chosen_rewards, rejected_rewards = self.dpo_loss(
                policy_chosen_logps, policy_rejected_logps, reference_chosen_logps, reference_rejected_logps
            )

        return losses, chosen_rewards, rejected_rewards

    def concatenated_forward(
        self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
    ) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
        r"""
        Computes the sum log probabilities of the labels under given logits if loss_type is not IPO, ORPO or SimPO.

        Otherwise the average log probabilities.
        """
        if self.finetuning_args.use_ref_model:
            batch = {k: v.detach().clone() for k, v in batch.items()}  # avoid error

        all_logits: "torch.Tensor" = model(**batch, return_dict=True, use_cache=False).logits.to(torch.float32)

        all_logps, valid_length = get_batch_logps(logits=all_logits, labels=batch["labels"])
        if self.loss_type in ["ipo", "orpo", "simpo"]:
            all_logps = all_logps / valid_length

        batch_size = batch["input_ids"].size(0) // 2
        chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0)
        chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0)
        chosen_length, _ = valid_length.split(batch_size, dim=0)
        return chosen_logps, rejected_logps, chosen_logits, rejected_logits, chosen_logps / chosen_length

    def compute_reference_log_probs(
        self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
    ) -> Tuple[Optional["torch.Tensor"], Optional["torch.Tensor"]]:
        r"""
        Computes log probabilities of the reference model.
        """
        if not self.finetuning_args.use_ref_model:
            return None, None

        if self.ref_model is None:
            ref_model = model
            ref_context = self.accelerator.unwrap_model(model).disable_adapter()
        else:
            ref_model = self.ref_model
            ref_context = nullcontext()

        with torch.no_grad(), ref_context:
            reference_chosen_logps, reference_rejected_logps, *_ = self.concatenated_forward(ref_model, batch)

        return reference_chosen_logps, reference_rejected_logps

    def get_batch_loss_metrics(
        self,
        model: "PreTrainedModel",
        batch: Dict[str, "torch.Tensor"],
        train_eval: Literal["train", "eval"] = "train",
    ) -> Tuple["torch.Tensor", Dict[str, "torch.Tensor"]]:
        r"""
        Computes the DPO loss and other metrics for the given batch of inputs for train or test.
        """
        metrics = {}
        (
            policy_chosen_logps,
            policy_rejected_logps,
            policy_chosen_logits,
            policy_rejected_logits,
            policy_chosen_logps_avg,
        ) = self.concatenated_forward(model, batch)

        reference_chosen_logps, reference_rejected_logps = self.compute_reference_log_probs(model, batch)
        losses, chosen_rewards, rejected_rewards = self.compute_preference_loss(
            policy_chosen_logps,
            policy_rejected_logps,
            reference_chosen_logps,
            reference_rejected_logps,
        )
        sft_loss = -policy_chosen_logps_avg
        if self.ftx_gamma > 1e-6:
            losses += self.ftx_gamma * sft_loss

        reward_accuracies = (chosen_rewards > rejected_rewards).float()

        prefix = "eval_" if train_eval == "eval" else ""
        metrics["{}rewards/chosen".format(prefix)] = chosen_rewards.mean().cpu()
        metrics["{}rewards/rejected".format(prefix)] = rejected_rewards.mean().cpu()
        metrics["{}rewards/accuracies".format(prefix)] = reward_accuracies.mean().cpu()
        metrics["{}rewards/margins".format(prefix)] = (chosen_rewards - rejected_rewards).mean().cpu()
        metrics["{}logps/rejected".format(prefix)] = policy_rejected_logps.detach().mean().cpu()
        metrics["{}logps/chosen".format(prefix)] = policy_chosen_logps.detach().mean().cpu()
        metrics["{}logits/rejected".format(prefix)] = policy_rejected_logits.detach().mean().cpu()
        metrics["{}logits/chosen".format(prefix)] = policy_chosen_logits.detach().mean().cpu()
        if self.loss_type == "orpo":
            metrics["{}sft_loss".format(prefix)] = sft_loss.detach().mean().cpu()
            metrics["{}odds_ratio_loss".format(prefix)] = ((losses - sft_loss) / self.beta).detach().mean().cpu()

        return losses.mean(), metrics