Added my Project Files, Deployed my App
Browse files- app.py +67 -0
- requirements.txt +2 -0
app.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import transformers
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 5 |
+
|
| 6 |
+
# Load the model and tokenizer
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained("ikoghoemmanuell/finetuned_sentiment_modell")
|
| 8 |
+
model = AutoModelForSequenceClassification.from_pretrained("ikoghoemmanuell/finetuned_sentiment_modell")
|
| 9 |
+
|
| 10 |
+
# Define the function for sentiment analysis
|
| 11 |
+
@st.cache_resource
|
| 12 |
+
def predict_sentiment(text):
|
| 13 |
+
# Load the pipeline.
|
| 14 |
+
pipeline = transformers.pipeline("sentiment-analysis")
|
| 15 |
+
|
| 16 |
+
# Predict the sentiment.
|
| 17 |
+
prediction = pipeline(text)
|
| 18 |
+
sentiment = prediction[0]["label"]
|
| 19 |
+
score = prediction[0]["score"]
|
| 20 |
+
|
| 21 |
+
return sentiment, score
|
| 22 |
+
|
| 23 |
+
# Setting the page configurations
|
| 24 |
+
st.set_page_config(
|
| 25 |
+
page_title="Sentiment Analysis App",
|
| 26 |
+
page_icon=":smile:",
|
| 27 |
+
layout="wide",
|
| 28 |
+
initial_sidebar_state="auto",
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
# Add description and title
|
| 32 |
+
st.write("""
|
| 33 |
+
# How Positive or Negative is your Text?
|
| 34 |
+
Enter some text and we'll tell you if it has a positive, negative, or neutral sentiment!
|
| 35 |
+
""")
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
# Add image
|
| 39 |
+
image = st.image("https://i0.wp.com/thedatascientist.com/wp-content/uploads/2018/10/sentiment-analysis.png", width=400)
|
| 40 |
+
|
| 41 |
+
# Get user input
|
| 42 |
+
text = st.text_input("Enter some text here:")
|
| 43 |
+
|
| 44 |
+
# Define the CSS style for the app
|
| 45 |
+
st.markdown(
|
| 46 |
+
"""
|
| 47 |
+
<style>
|
| 48 |
+
body {
|
| 49 |
+
background-color: #f5f5f5;
|
| 50 |
+
}
|
| 51 |
+
h1 {
|
| 52 |
+
color: #4e79a7;
|
| 53 |
+
}
|
| 54 |
+
</style>
|
| 55 |
+
""",
|
| 56 |
+
unsafe_allow_html=True
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# Show sentiment output
|
| 60 |
+
if text:
|
| 61 |
+
sentiment, score = predict_sentiment(text)
|
| 62 |
+
if sentiment == "Positive":
|
| 63 |
+
st.success(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
| 64 |
+
elif sentiment == "Negative":
|
| 65 |
+
st.error(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
| 66 |
+
else:
|
| 67 |
+
st.warning(f"The sentiment is {sentiment} with a score of {score*100:.2f}%!")
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|