Added all my project file and deployed my App
Browse files- Dockerfile.txt +19 -0
- main.py +86 -0
- model.pkl +3 -0
- requirements.txt +5 -0
- scaler.pkl +3 -0
Dockerfile.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use the official Python image as the base image
|
| 2 |
+
FROM python:3.9
|
| 3 |
+
|
| 4 |
+
# Set the working directory in the container
|
| 5 |
+
WORKDIR /code
|
| 6 |
+
|
| 7 |
+
# Copy requirements.txt file
|
| 8 |
+
COPY requirements.txt .
|
| 9 |
+
|
| 10 |
+
# Install the Python dependencies
|
| 11 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
| 12 |
+
|
| 13 |
+
# copy all the files in the app folder
|
| 14 |
+
COPY app/ .
|
| 15 |
+
|
| 16 |
+
EXPOSE 7860
|
| 17 |
+
|
| 18 |
+
# Start the FastAPI app with Uvicorn when the container starts
|
| 19 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
main.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
import pickle
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import numpy as np
|
| 6 |
+
import uvicorn
|
| 7 |
+
|
| 8 |
+
# call the app
|
| 9 |
+
app = FastAPI(title="API")
|
| 10 |
+
|
| 11 |
+
# Load the model and scaler
|
| 12 |
+
def load_model_and_scaler():
|
| 13 |
+
with open("model.pkl", "rb") as f1, open("scaler.pkl", "rb") as f2:
|
| 14 |
+
return pickle.load(f1), pickle.load(f2)
|
| 15 |
+
|
| 16 |
+
model, scaler = load_model_and_scaler()
|
| 17 |
+
|
| 18 |
+
def predict(df, endpoint="simple"):
|
| 19 |
+
# Scaling
|
| 20 |
+
scaled_df = scaler.transform(df) # Scale the input data using a pre-defined scaler
|
| 21 |
+
|
| 22 |
+
# Prediction
|
| 23 |
+
prediction = model.predict_proba(scaled_df) # Make predictions using a pre-trained model
|
| 24 |
+
|
| 25 |
+
highest_proba = prediction.max(axis=1) # Get the highest probability for each prediction
|
| 26 |
+
|
| 27 |
+
# Assign predicted labels based on the highest probabilities
|
| 28 |
+
predicted_labels = ["Patient does not have sepsis" if i == 0 else "Patient has sepsis" for i in highest_proba]
|
| 29 |
+
print(f"Predicted labels: {predicted_labels}") # Print the predicted labels to the terminal
|
| 30 |
+
print(highest_proba) # Print the highest probabilities to the terminal
|
| 31 |
+
|
| 32 |
+
response = []
|
| 33 |
+
for label, proba in zip(predicted_labels, highest_proba):
|
| 34 |
+
# Create a response for each prediction with the predicted label and probability
|
| 35 |
+
output = {
|
| 36 |
+
"prediction": label,
|
| 37 |
+
"probability of prediction": str(round(proba * 100)) + '%' # Convert the probability to a percentage
|
| 38 |
+
}
|
| 39 |
+
response.append(output) # Add the response to the list of responses
|
| 40 |
+
|
| 41 |
+
return response # Return the list of responses
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class Patient(BaseModel):
|
| 45 |
+
Blood_Work_R1: int
|
| 46 |
+
Blood_Pressure: int
|
| 47 |
+
Blood_Work_R3: int
|
| 48 |
+
BMI: float
|
| 49 |
+
Blood_Work_R4: float
|
| 50 |
+
Patient_age: int
|
| 51 |
+
|
| 52 |
+
class Patients(BaseModel):
|
| 53 |
+
all_patients: list[Patient]
|
| 54 |
+
|
| 55 |
+
@classmethod
|
| 56 |
+
def return_list_of_dict(cls, patients: "Patients"):
|
| 57 |
+
patient_list = []
|
| 58 |
+
for patient in patients.all_patients: #for each item in all_patients,
|
| 59 |
+
patient_dict = patient.dict() #convert to a dictionary
|
| 60 |
+
patient_list.append(patient_dict) #add it to the empty list called patient_list
|
| 61 |
+
return patient_list
|
| 62 |
+
|
| 63 |
+
# Endpoints
|
| 64 |
+
# Root Endpoint
|
| 65 |
+
@app.get("/")
|
| 66 |
+
def root():
|
| 67 |
+
return {"Welcome to the Sepsis Prediction API! This API provides endpoints for predicting sepsis based on patient data."}
|
| 68 |
+
|
| 69 |
+
# Prediction endpoint
|
| 70 |
+
@app.post("/predict")
|
| 71 |
+
def predict_sepsis(patient: Patient):
|
| 72 |
+
# Make prediction
|
| 73 |
+
data = pd.DataFrame(patient.dict(), index=[0])
|
| 74 |
+
parsed = predict(df=data)
|
| 75 |
+
return {"output": parsed}
|
| 76 |
+
|
| 77 |
+
# Multiple Prediction Endpoint
|
| 78 |
+
@app.post("/predict_multiple")
|
| 79 |
+
def predict_sepsis_for_multiple_patients(patients: Patients):
|
| 80 |
+
"""Make prediction with the passed data"""
|
| 81 |
+
data = pd.DataFrame(Patients.return_list_of_dict(patients))
|
| 82 |
+
parsed = predict(df=data, endpoint="multi")
|
| 83 |
+
return {"output": parsed}
|
| 84 |
+
|
| 85 |
+
if __name__ == "__main__":
|
| 86 |
+
uvicorn.run("main:app", reload=True)
|
model.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e03b9e36a896ad1fdce4008c8f0bbaf734571a4a757197fadcb36821bc00f215
|
| 3 |
+
size 937816
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi[all]
|
| 2 |
+
scikit-learn==1.2.1
|
| 3 |
+
numpy==1.21.5
|
| 4 |
+
pandas==1.3.1
|
| 5 |
+
pydantic
|
scaler.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aeb4a535138b890f96a1f33737c29b408c1f673a6ed4500882a3ed382f65126b
|
| 3 |
+
size 814
|