WrittenRec / app.py
JustKiddo's picture
Update app.py
6bf7cb4 verified
raw
history blame
1.83 kB
import gradio as gr
import numpy as np
from huggingface_hub import InferenceClient
client = InferenceClient("models/microsoft/trocr-base-handwritten")
def sepia(input_img):
sepia_filter = np.array([
[0.393, 0.769, 0.189],
[0.349, 0.686, 0.168],
[0.272, 0.534, 0.131]
])
sepia_img = input_img.dot(sepia_filter.T)
sepia_img /= sepia_img.max()
sepia_values = repr(sepia_img)
return sepia_img, sepia_values
## https://www.gradio.app/docs/gradio/blocks
## required positional arguments: 'inputs' and 'outputs'
def process_image(image):
# Your image processing logic here
return "Processed Text"
def additional_input(text):
return f"Additional input received: {text}"
sepia_interface = gr.Interface(sepia, gr.Image(), "image")
with gr.Blocks() as generated_output:
with gr.Column():
gr.Interface(fn=sepia,
inputs=gr.Image(),
outputs="image",
show_progress="minimal")
with gr.Row():
gr.Textbox(label="text")
#gr.Interface(sepia,
# inputs = gr.Image(label="image"),
# outputs = gr.Textbox())
#with gr.Blocks() as generated_output:
# inp = gr.Interface(sepia, gr.Image(), "image")
# out = gr.Textbox()
#demo = gr.TabbedInterface([sepia_interface, generated_output], ["RGB Sepia Filter", "Handwritten to Text"])
with gr.Blocks() as demo:
with gr.Row():
input_img = gr.Image(label="Input Image")
submit_button = gr.Button("Submit")
output_img = gr.Image(label="Output Image")
sepia_values_text = gr.Textbox(label="Sepia Values")
submit_button.click(sepia, inputs=input_img, outputs=[output_img, sepia_values_text])
if __name__ == "__main__":
demo.launch()