Spaces:
Sleeping
Sleeping
File size: 2,141 Bytes
caae3e0 3afe20e 0e02df5 caae3e0 2337a39 6bf7cb4 2337a39 cc1887c ff3f385 778806f 3bfbec3 f51c254 3bfbec3 72d2777 3bfbec3 6bc3d42 ba34741 0814097 31ac16a 09ee0b6 7c56fd1 e5ef9c4 7c56fd1 b7b5d68 cc1887c caae3e0 64e1a19 0bb8b0b a77c349 64e1a19 a77c349 64e1a19 caae3e0 a77c349 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import gradio as gr
import numpy as np
from transformers import InferenceClient
client = InferenceClient("models/microsoft/trocr-base-handwritten")
def sepia(input_img):
sepia_filter = np.array([
[0.393, 0.769, 0.189],
[0.349, 0.686, 0.168],
[0.272, 0.534, 0.131]
])
sepia_img = input_img.dot(sepia_filter.T)
sepia_img /= sepia_img.max()
sepia_values = repr(sepia_img)
return sepia_img, sepia_values
## https://www.gradio.app/docs/gradio/blocks
## required positional arguments: 'inputs' and 'outputs'
def process_image(image):
try:
# Run the image through the model
result = client(inputs=image)
# Extract the text from the result
text = result['text']
return text
except Exception as e:
return f"Error: {str(e)}"
def additional_input(text):
return f"Additional input received: {text}"
sepia_interface = gr.Interface(sepia, gr.Image(), "image")
with gr.Blocks() as generated_output:
with gr.Column():
sepia_values_text=gr.Textbox(label="Sepia Values")
output_img = gr.Image(label="Output Image")
gr.Interface(fn=sepia,
inputs=gr.Image(),
outputs=[output_img, sepia_values_text],
show_progress="full")
with gr.Row():
gr.Interface(
fn=process_image,
inputs=output_img,
outputs=gr.Textbox(label="Recognized Text"),
show_progress="full")
#with gr.Blocks() as generated_output:
# inp = gr.Interface(sepia, gr.Image(), "image")
# out = gr.Textbox()
#demo = gr.TabbedInterface([sepia_interface, generated_output], ["RGB Sepia Filter", "Handwritten to Text"])
#with gr.Blocks() as demo:
# with gr.Row():
# input_img = gr.Image(label="Input Image")
# submit_button = gr.Button("Submit")
# output_img = gr.Image(label="Output Image")
# sepia_values_text = gr.Textbox(label="Sepia Values")
# submit_button.click(sepia, inputs=input_img, outputs=[output_img, sepia_values_text])
if __name__ == "__main__":
generated_output.launch()
|