File size: 1,776 Bytes
caae3e0
3afe20e
caae3e0
 
 
 
2337a39
 
 
 
 
 
 
 
6bf7cb4
 
2337a39
cc1887c
ff3f385
778806f
3bfbec3
 
 
 
 
 
 
72d2777
 
3bfbec3
6bc3d42
ba34741
 
0814097
31ac16a
09ee0b6
 
6f76811
b7b5d68
 
 
cc1887c
caae3e0
64e1a19
0bb8b0b
a77c349
 
 
 
 
 
64e1a19
a77c349
64e1a19
caae3e0
a77c349
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import gradio as gr
import numpy as np
from huggingface_hub import InferenceClient

client = InferenceClient("models/microsoft/trocr-base-handwritten")

def sepia(input_img):
    sepia_filter = np.array([
        [0.393, 0.769, 0.189],
        [0.349, 0.686, 0.168],
        [0.272, 0.534, 0.131]
    ])
    sepia_img = input_img.dot(sepia_filter.T)
    sepia_img /= sepia_img.max()
    sepia_values = repr(sepia_img)
    return sepia_img, sepia_values


## https://www.gradio.app/docs/gradio/blocks
## required positional arguments: 'inputs' and 'outputs'
def process_image(image):
    # Your image processing logic here
    return "Processed Text"

def additional_input(text):
    return f"Additional input received: {text}"

sepia_interface = gr.Interface(sepia, gr.Image(), "image")

with gr.Blocks() as generated_output:
    with gr.Column():
        sepia_values_text=gr.Textbox(label="Sepia Values")
        output_img = gr.Image(label="Output Image")
        gr.Interface(fn=sepia,
                     inputs=gr.Image(), 
                     outputs=[output_img, sepia_values_text],
                     show_progress="full")

#with gr.Blocks() as generated_output:
#    inp = gr.Interface(sepia, gr.Image(), "image")
#    out = gr.Textbox()


#demo = gr.TabbedInterface([sepia_interface, generated_output], ["RGB Sepia Filter", "Handwritten to Text"])

#with gr.Blocks() as demo:
#    with gr.Row():
#        input_img = gr.Image(label="Input Image")
#        submit_button = gr.Button("Submit")
#        output_img = gr.Image(label="Output Image")
#        sepia_values_text = gr.Textbox(label="Sepia Values")

#    submit_button.click(sepia, inputs=input_img, outputs=[output_img, sepia_values_text])
    
if __name__ == "__main__":
    generated_output.launch()