Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,181 +1,145 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
import torch
|
4 |
-
import
|
|
|
|
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
st.markdown("""
|
9 |
-
<style>
|
10 |
-
.chat-container {
|
11 |
-
padding: 10px;
|
12 |
-
border-radius: 5px;
|
13 |
-
margin-bottom: 10px;
|
14 |
-
display: flex;
|
15 |
-
flex-direction: column;
|
16 |
-
}
|
17 |
-
|
18 |
-
.user-message {
|
19 |
-
background-color: #e3f2fd;
|
20 |
-
padding: 10px;
|
21 |
-
border-radius: 15px;
|
22 |
-
margin: 5px;
|
23 |
-
margin-left: 20%;
|
24 |
-
margin-right: 5px;
|
25 |
-
align-self: flex-end;
|
26 |
-
max-width: 70%;
|
27 |
-
}
|
28 |
-
|
29 |
-
.bot-message {
|
30 |
-
background-color: #f5f5f5;
|
31 |
-
padding: 10px;
|
32 |
-
border-radius: 15px;
|
33 |
-
margin: 5px;
|
34 |
-
margin-right: 20%;
|
35 |
-
margin-left: 5px;
|
36 |
-
align-self: flex-start;
|
37 |
-
max-width: 70%;
|
38 |
-
}
|
39 |
-
|
40 |
-
.thinking-animation {
|
41 |
-
display: flex;
|
42 |
-
align-items: center;
|
43 |
-
margin-left: 10px;
|
44 |
-
}
|
45 |
-
|
46 |
-
.dot {
|
47 |
-
width: 8px;
|
48 |
-
height: 8px;
|
49 |
-
margin: 0 3px;
|
50 |
-
background: #888;
|
51 |
-
border-radius: 50%;
|
52 |
-
animation: bounce 0.8s infinite;
|
53 |
-
}
|
54 |
-
|
55 |
-
.dot:nth-child(2) { animation-delay: 0.2s; }
|
56 |
-
.dot:nth-child(3) { animation-delay: 0.4s; }
|
57 |
-
|
58 |
-
@keyframes bounce {
|
59 |
-
0%, 100% { transform: translateY(0); }
|
60 |
-
50% { transform: translateY(-5px); }
|
61 |
-
}
|
62 |
-
</style>
|
63 |
-
""", unsafe_allow_html=True)
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
71 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
72 |
-
return model, tokenizer
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
outputs = model.generate(
|
81 |
-
inputs.input_ids,
|
82 |
-
max_length=max_length,
|
83 |
-
num_return_sequences=1,
|
84 |
-
temperature=0.7,
|
85 |
-
top_k=50,
|
86 |
-
top_p=0.95,
|
87 |
-
do_sample=True,
|
88 |
-
pad_token_id=tokenizer.eos_token_id,
|
89 |
-
attention_mask=inputs.attention_mask
|
90 |
-
)
|
91 |
-
|
92 |
-
# Decode response
|
93 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
94 |
-
# Remove the input prompt from the response
|
95 |
-
response = response[len(prompt):].strip()
|
96 |
-
return response
|
97 |
-
|
98 |
-
def init_session_state():
|
99 |
-
if 'messages' not in st.session_state:
|
100 |
-
st.session_state.messages = []
|
101 |
-
if 'thinking' not in st.session_state:
|
102 |
-
st.session_state.thinking = False
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
if
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
-
#
|
125 |
-
|
126 |
-
st.markdown("Xin chào! Tôi là trợ lý IOGPT. Hãy hỏi tôi bất cứ điều gì!")
|
127 |
|
128 |
-
# Chat history
|
129 |
-
|
|
|
130 |
|
131 |
-
#
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
user_input = st.text_input(
|
136 |
-
"Nhập tin nhắn của bạn...",
|
137 |
-
key="user_input",
|
138 |
-
label_visibility="hidden"
|
139 |
-
)
|
140 |
-
with col2:
|
141 |
-
send_button = st.button("Gửi")
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
# Show thinking animation
|
148 |
-
st.session_state.thinking = True
|
149 |
|
150 |
-
#
|
151 |
-
|
152 |
-
|
153 |
-
for msg in st.session_state.messages[-3:] # Last 3 messages for context
|
154 |
-
])
|
155 |
|
156 |
-
#
|
157 |
-
|
158 |
-
bot_response = generate_response(prompt, model, tokenizer)
|
159 |
|
160 |
-
#
|
161 |
-
st.
|
162 |
-
|
163 |
|
164 |
-
#
|
165 |
-
st.
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
display_chat_history()
|
170 |
-
|
171 |
-
if st.session_state.thinking:
|
172 |
-
st.markdown("""
|
173 |
-
<div class="thinking-animation">
|
174 |
-
<div class="dot"></div>
|
175 |
-
<div class="dot"></div>
|
176 |
-
<div class="dot"></div>
|
177 |
-
</div>
|
178 |
-
""", unsafe_allow_html=True)
|
179 |
|
180 |
if __name__ == "__main__":
|
181 |
main()
|
|
|
1 |
+
import os
|
2 |
import streamlit as st
|
|
|
3 |
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModel
|
5 |
+
import numpy as np
|
6 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
|
8 |
+
# Get the port from Heroku environment, default to 8501 for local development
|
9 |
+
PORT = int(os.environ.get('PORT', 8501))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
class LazyLoadModel:
|
12 |
+
def __init__(self, model_name='intfloat/multilingual-e5-small'):
|
13 |
+
self.model_name = model_name
|
14 |
+
self._tokenizer = None
|
15 |
+
self._model = None
|
|
|
|
|
|
|
16 |
|
17 |
+
@property
|
18 |
+
def tokenizer(self):
|
19 |
+
if self._tokenizer is None:
|
20 |
+
print("Loading tokenizer...")
|
21 |
+
self._tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
22 |
+
return self._tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
@property
|
25 |
+
def model(self):
|
26 |
+
if self._model is None:
|
27 |
+
print("Loading model...")
|
28 |
+
# Use float16 to reduce memory and potentially speed up loading
|
29 |
+
self._model = AutoModel.from_pretrained(self.model_name, torch_dtype=torch.float16)
|
30 |
+
return self._model
|
31 |
|
32 |
+
class VietnameseChatbot:
|
33 |
+
def __init__(self):
|
34 |
+
"""
|
35 |
+
Initialize the Vietnamese chatbot with lazy-loaded model
|
36 |
+
"""
|
37 |
+
self.model_loader = LazyLoadModel()
|
38 |
+
|
39 |
+
# Very minimal conversation data to reduce startup time
|
40 |
+
self.conversation_data = [
|
41 |
+
{"query": "Xin chào", "response": "Chào bạn!"},
|
42 |
+
{"query": "Bạn là ai?", "response": "Tôi là trợ lý AI."},
|
43 |
+
]
|
44 |
+
|
45 |
+
def embed_text(self, text):
|
46 |
+
"""
|
47 |
+
Generate embeddings for input text
|
48 |
+
"""
|
49 |
+
try:
|
50 |
+
# Tokenize and generate embeddings
|
51 |
+
inputs = self.model_loader.tokenizer(text, return_tensors='pt', padding=True, truncation=True)
|
52 |
+
|
53 |
+
with torch.no_grad():
|
54 |
+
model_output = self.model_loader.model(**inputs)
|
55 |
+
|
56 |
+
# Mean pooling
|
57 |
+
embeddings = self.mean_pooling(model_output, inputs['attention_mask'])
|
58 |
+
return embeddings.numpy()
|
59 |
+
except Exception as e:
|
60 |
+
print(f"Embedding error: {e}")
|
61 |
+
return None
|
62 |
|
63 |
+
def mean_pooling(self, model_output, attention_mask):
|
64 |
+
"""
|
65 |
+
Perform mean pooling on model output
|
66 |
+
"""
|
67 |
+
token_embeddings = model_output[0]
|
68 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
69 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
70 |
|
71 |
+
def get_response(self, user_query):
|
72 |
+
"""
|
73 |
+
Find the most similar response from conversation data
|
74 |
+
"""
|
75 |
+
try:
|
76 |
+
# Embed user query
|
77 |
+
query_embedding = self.embed_text(user_query)
|
78 |
+
|
79 |
+
if query_embedding is None:
|
80 |
+
return "Xin lỗi, đã có lỗi xảy ra."
|
81 |
+
|
82 |
+
# Embed conversation data
|
83 |
+
conversation_embeddings = np.array([
|
84 |
+
self.embed_text(item['query'])[0] for item in self.conversation_data
|
85 |
+
])
|
86 |
+
|
87 |
+
# Calculate cosine similarities
|
88 |
+
similarities = cosine_similarity(query_embedding, conversation_embeddings)[0]
|
89 |
+
|
90 |
+
# Find most similar response
|
91 |
+
best_match_index = np.argmax(similarities)
|
92 |
+
|
93 |
+
# Return response if similarity is above threshold
|
94 |
+
if similarities[best_match_index] > 0.5:
|
95 |
+
return self.conversation_data[best_match_index]['response']
|
96 |
+
|
97 |
+
return "Xin lỗi, tôi không hiểu câu hỏi của bạn."
|
98 |
+
except Exception as e:
|
99 |
+
print(f"Response generation error: {e}")
|
100 |
+
return "Đã xảy ra lỗi. Xin vui lòng thử lại."
|
101 |
+
|
102 |
+
def main():
|
103 |
+
# Server configuration to use Heroku-assigned port
|
104 |
+
if 'PORT' in os.environ:
|
105 |
+
#st.set_option('server.port', PORT)
|
106 |
+
print(f"Server starting on port {PORT}")
|
107 |
+
|
108 |
+
st.title("🤖 Trợ Lý AI Tiếng Việt")
|
109 |
|
110 |
+
# Initialize chatbot
|
111 |
+
chatbot = VietnameseChatbot()
|
|
|
112 |
|
113 |
+
# Chat history in session state
|
114 |
+
if 'messages' not in st.session_state:
|
115 |
+
st.session_state.messages = []
|
116 |
|
117 |
+
# Display chat messages
|
118 |
+
for message in st.session_state.messages:
|
119 |
+
with st.chat_message(message["role"]):
|
120 |
+
st.markdown(message["content"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
+
# User input
|
123 |
+
if prompt := st.chat_input("Hãy nói gì đó..."):
|
124 |
+
# Add user message to chat history
|
125 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
|
|
|
|
126 |
|
127 |
+
# Display user message
|
128 |
+
with st.chat_message("user"):
|
129 |
+
st.markdown(prompt)
|
|
|
|
|
130 |
|
131 |
+
# Get chatbot response
|
132 |
+
response = chatbot.get_response(prompt)
|
|
|
133 |
|
134 |
+
# Display chatbot response
|
135 |
+
with st.chat_message("assistant"):
|
136 |
+
st.markdown(response)
|
137 |
|
138 |
+
# Add assistant message to chat history
|
139 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
140 |
+
|
141 |
+
# Logging for Heroku diagnostics
|
142 |
+
print("Chatbot application is initializing...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
if __name__ == "__main__":
|
145 |
main()
|