Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,33 +1,83 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
#
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
class VietnameseChatbot:
|
| 20 |
def __init__(self):
|
| 21 |
-
self.api_key = st.secrets["GROQ_API_KEY"]
|
| 22 |
self.api_url = "https://api.groq.com/openai/v1/chat/completions"
|
| 23 |
self.headers = {
|
| 24 |
-
"Content-Type": "application/json",
|
| 25 |
"Authorization": f"Bearer {self.api_key}"
|
| 26 |
}
|
| 27 |
-
|
|
|
|
|
|
|
| 28 |
def get_response(self, user_query):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
try:
|
| 30 |
-
# Add a system message to guide the model's response
|
| 31 |
payload = {
|
| 32 |
"model": "llama-3.2-3b-preview",
|
| 33 |
"messages": [
|
|
@@ -38,19 +88,25 @@ class VietnameseChatbot:
|
|
| 38 |
{"role": "user", "content": user_query}
|
| 39 |
]
|
| 40 |
}
|
|
|
|
| 41 |
response = requests.post(
|
| 42 |
-
self.api_url,
|
|
|
|
|
|
|
| 43 |
)
|
|
|
|
| 44 |
if response.status_code == 200:
|
| 45 |
return response.json()['choices'][0]['message']['content']
|
| 46 |
else:
|
| 47 |
print(f"API Error: {response.status_code}")
|
| 48 |
print(f"Response: {response.text}")
|
| 49 |
return "Đã xảy ra lỗi khi kết nối với API. Xin vui lòng thử lại."
|
|
|
|
| 50 |
except Exception as e:
|
| 51 |
print(f"Response generation error: {e}")
|
| 52 |
return "Đã xảy ra lỗi. Xin vui lòng thử lại."
|
| 53 |
|
|
|
|
| 54 |
@st.cache_resource
|
| 55 |
def initialize_chatbot():
|
| 56 |
return VietnameseChatbot()
|
|
@@ -61,32 +117,32 @@ def main():
|
|
| 61 |
|
| 62 |
# Initialize chatbot using cached initialization
|
| 63 |
chatbot = initialize_chatbot()
|
| 64 |
-
|
| 65 |
# Chat history in session state
|
| 66 |
if 'messages' not in st.session_state:
|
| 67 |
st.session_state.messages = []
|
| 68 |
-
|
| 69 |
# Display chat messages
|
| 70 |
for message in st.session_state.messages:
|
| 71 |
with st.chat_message(message["role"]):
|
| 72 |
st.markdown(message["content"])
|
| 73 |
-
|
| 74 |
# User input
|
| 75 |
if prompt := st.chat_input("Hãy nói gì đó..."):
|
| 76 |
# Add user message to chat history
|
| 77 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 78 |
-
|
| 79 |
# Display user message
|
| 80 |
with st.chat_message("user"):
|
| 81 |
st.markdown(prompt)
|
| 82 |
-
|
| 83 |
# Get chatbot response
|
| 84 |
response = chatbot.get_response(prompt)
|
| 85 |
-
|
| 86 |
# Display chatbot response
|
| 87 |
with st.chat_message("assistant"):
|
| 88 |
st.markdown(response)
|
| 89 |
-
|
| 90 |
# Add assistant message to chat history
|
| 91 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
| 92 |
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import requests
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
from sentence_transformers import SentenceTransformer
|
| 5 |
+
import numpy as np
|
| 6 |
+
import faiss
|
| 7 |
|
| 8 |
+
class CompanyKnowledgeBase:
|
| 9 |
+
def __init__(self, dataset_name="JustKiddo/IODataset"):
|
| 10 |
+
# Load dataset from Hugging Face
|
| 11 |
+
try:
|
| 12 |
+
self.dataset = load_dataset(dataset_name)['train']
|
| 13 |
+
|
| 14 |
+
# Initialize semantic search
|
| 15 |
+
self.model = SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2')
|
| 16 |
+
|
| 17 |
+
# Prepare embeddings for all questions
|
| 18 |
+
self.embeddings = self.model.encode([
|
| 19 |
+
q for entry in self.dataset
|
| 20 |
+
for q in entry['questions']
|
| 21 |
+
])
|
| 22 |
+
|
| 23 |
+
# Create FAISS index for efficient similarity search
|
| 24 |
+
self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
|
| 25 |
+
self.index.add(self.embeddings)
|
| 26 |
+
|
| 27 |
+
# Prepare a mapping of embeddings to answers
|
| 28 |
+
self.question_to_answer = {}
|
| 29 |
+
for entry in self.dataset:
|
| 30 |
+
for question in entry['questions']:
|
| 31 |
+
self.question_to_answer[question] = entry['answer']
|
| 32 |
+
|
| 33 |
+
except Exception as e:
|
| 34 |
+
st.error(f"Error loading knowledge base: {e}")
|
| 35 |
+
self.dataset = None
|
| 36 |
+
self.embeddings = None
|
| 37 |
+
self.index = None
|
| 38 |
+
self.question_to_answer = {}
|
| 39 |
+
|
| 40 |
+
def find_answer(self, query, threshold=0.8):
|
| 41 |
+
if not self.dataset:
|
| 42 |
+
return None
|
| 43 |
+
|
| 44 |
+
try:
|
| 45 |
+
# Embed the query
|
| 46 |
+
query_embedding = self.model.encode([query])
|
| 47 |
+
|
| 48 |
+
# Search for similar questions
|
| 49 |
+
D, I = self.index.search(query_embedding, 1)
|
| 50 |
+
|
| 51 |
+
# If similarity is high enough, return the corresponding answer
|
| 52 |
+
if D[0][0] < threshold:
|
| 53 |
+
# Find the matched question
|
| 54 |
+
matched_question = list(self.question_to_answer.keys())[I[0][0]]
|
| 55 |
+
return self.question_to_answer[matched_question]
|
| 56 |
+
|
| 57 |
+
except Exception as e:
|
| 58 |
+
st.error(f"Error in semantic search: {e}")
|
| 59 |
+
|
| 60 |
+
return None
|
| 61 |
|
| 62 |
class VietnameseChatbot:
|
| 63 |
def __init__(self):
|
| 64 |
+
self.api_key = st.secrets["GROQ_API_KEY"]
|
| 65 |
self.api_url = "https://api.groq.com/openai/v1/chat/completions"
|
| 66 |
self.headers = {
|
| 67 |
+
"Content-Type": "application/json",
|
| 68 |
"Authorization": f"Bearer {self.api_key}"
|
| 69 |
}
|
| 70 |
+
# Initialize company knowledge base
|
| 71 |
+
self.company_kb = CompanyKnowledgeBase()
|
| 72 |
+
|
| 73 |
def get_response(self, user_query):
|
| 74 |
+
# First, check company knowledge base
|
| 75 |
+
company_answer = self.company_kb.find_answer(user_query)
|
| 76 |
+
if company_answer:
|
| 77 |
+
return company_answer
|
| 78 |
+
|
| 79 |
+
# If no company-specific answer, proceed with original API call
|
| 80 |
try:
|
|
|
|
| 81 |
payload = {
|
| 82 |
"model": "llama-3.2-3b-preview",
|
| 83 |
"messages": [
|
|
|
|
| 88 |
{"role": "user", "content": user_query}
|
| 89 |
]
|
| 90 |
}
|
| 91 |
+
|
| 92 |
response = requests.post(
|
| 93 |
+
self.api_url,
|
| 94 |
+
headers=self.headers,
|
| 95 |
+
json=payload
|
| 96 |
)
|
| 97 |
+
|
| 98 |
if response.status_code == 200:
|
| 99 |
return response.json()['choices'][0]['message']['content']
|
| 100 |
else:
|
| 101 |
print(f"API Error: {response.status_code}")
|
| 102 |
print(f"Response: {response.text}")
|
| 103 |
return "Đã xảy ra lỗi khi kết nối với API. Xin vui lòng thử lại."
|
| 104 |
+
|
| 105 |
except Exception as e:
|
| 106 |
print(f"Response generation error: {e}")
|
| 107 |
return "Đã xảy ra lỗi. Xin vui lòng thử lại."
|
| 108 |
|
| 109 |
+
# Cached initialization of chatbot
|
| 110 |
@st.cache_resource
|
| 111 |
def initialize_chatbot():
|
| 112 |
return VietnameseChatbot()
|
|
|
|
| 117 |
|
| 118 |
# Initialize chatbot using cached initialization
|
| 119 |
chatbot = initialize_chatbot()
|
| 120 |
+
|
| 121 |
# Chat history in session state
|
| 122 |
if 'messages' not in st.session_state:
|
| 123 |
st.session_state.messages = []
|
| 124 |
+
|
| 125 |
# Display chat messages
|
| 126 |
for message in st.session_state.messages:
|
| 127 |
with st.chat_message(message["role"]):
|
| 128 |
st.markdown(message["content"])
|
| 129 |
+
|
| 130 |
# User input
|
| 131 |
if prompt := st.chat_input("Hãy nói gì đó..."):
|
| 132 |
# Add user message to chat history
|
| 133 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 134 |
+
|
| 135 |
# Display user message
|
| 136 |
with st.chat_message("user"):
|
| 137 |
st.markdown(prompt)
|
| 138 |
+
|
| 139 |
# Get chatbot response
|
| 140 |
response = chatbot.get_response(prompt)
|
| 141 |
+
|
| 142 |
# Display chatbot response
|
| 143 |
with st.chat_message("assistant"):
|
| 144 |
st.markdown(response)
|
| 145 |
+
|
| 146 |
# Add assistant message to chat history
|
| 147 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
| 148 |
|