File size: 2,673 Bytes
9f65e0d
 
 
 
 
 
 
0aaefc8
9f65e0d
 
 
6ed966a
9f65e0d
 
 
bd26754
9f65e0d
 
72640a4
9f65e0d
 
defb642
72640a4
aa02adf
72640a4
 
 
defb642
 
 
 
 
 
 
 
 
 
 
 
9f65e0d
 
 
defb642
 
 
9f65e0d
defb642
 
 
780e5cb
defb642
7a34d4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f65e0d
fda4b3f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import streamlit as st
import streamlit.components.v1 as com
#import libraries
from transformers import AutoModelForSequenceClassification,AutoTokenizer, AutoConfig
import numpy as np
#convert logits to probabilities
from scipy.special import softmax
from transformers import pipeline


#Set the page configs
st.set_page_config(page_title='Sentiments Analysis',page_icon='😎',layout='centered')

#welcome Animation
com.iframe("https://embed.lottiefiles.com/animation/149093")
st.markdown("<h1 style='text-align: center'> Tweet Sentiments </h1>",unsafe_allow_html=True)

#Create a form to take user inputs
with st.form(key='tweet',clear_on_submit=False):
    text=st.text_area('Copy and paste a tweet or type one',placeholder='I find it quite amusing how people ignore the effects of not taking the vaccine')
    submit=st.form_submit_button('submit')
if submit:
    #Check text
    if text=="":
        st.error('Empty text')
    else:
        st.success('Text received',icon='βœ…')
#Select a model
exp=st.expander(label='Choose a model and Click Continue or go ahead and Click continue to use default')
models={'Roberta': 'Junr-syl/sentiments_analysis_Roberta',
        'Bert':    'Junr-syl/sentiments_analysis_upgrade',
        'Distilbert':'Junr-syl/sentiments_analysis_DISTILBERT'}

with exp:
    model=st.selectbox('Which model would you want to Use?',('Bert','Roberta','Distilbert'))

selected_model=models[model]
#Click continue if no model is selected
Cont=st.button('Continue','Continue processing input')

#create columns to show outputs
col1,col2,col3=st.columns(3)
col1.write('<h2 style="font-size: 24px;"> Sentiment Emoji </h2>',unsafe_allow_html=True)
col2.write('<h2 style="font-size: 24px;"> How this user feels about the vaccine </h2>',unsafe_allow_html=True)
col3.write('<h2 style="font-size: 24px;"> Confidence of this prediction </h2>',unsafe_allow_html=True)

if Cont:
    #import the model
    pipe=pipeline(model=selected_model)
    
    
    #pass text to model
    output=pipe(text)
    output_dict=output[0]
    lable=output_dict['label']
    score=output_dict['score']
    
        #output
    if lable=='NEGATIVE':
        with col1:
            com.iframe("https://embed.lottiefiles.com/animation/125694")
        col2.write('NEGATIVE')
        col3.write(f'{score*100:.2f}%')
    elif lable=='POSITIVE':
        with col1:
            com.iframe("https://embed.lottiefiles.com/animation/148485")
        col2.write('POSITIVE')
        col3.write(f'{score*100:.2f}%')
    else:
        with col1:
            com.iframe("https://embed.lottiefiles.com/animation/136052")
        col2.write('NEUTRAL')
        col3.write(f'{score*100:.2f}%')