File size: 6,708 Bytes
957b75b
 
 
 
 
 
 
 
 
 
 
 
 
f43e234
 
 
 
 
957b75b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d766a
957b75b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
021d17f
 
 
957b75b
 
 
 
 
 
 
f43e234
 
 
 
 
 
 
 
 
 
 
957b75b
f43e234
 
 
957b75b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
021d17f
957b75b
 
 
 
 
 
 
021d17f
 
 
44c0550
957b75b
021d17f
 
 
957b75b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a76c14
 
 
 
 
 
 
 
 
 
 
 
021d17f
957b75b
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import ArxivLoader

from langchain_core.messages import HumanMessage, SystemMessage

from langchain_ollama import ChatOllama
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_huggingface import HuggingFaceEmbeddings, ChatHuggingFace, HuggingFaceEndpoint
from langgraph.graph import START, StateGraph, MessagesState

# from langchain_chroma import Chroma
import faiss
from langchain_community.docstore.in_memory import InMemoryDocstore
from langchain_community.vectorstores import FAISS

from langgraph.prebuilt import ToolNode
from langgraph.prebuilt import tools_condition

import os
from dotenv import load_dotenv


load_dotenv()


@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers and return the result.

    Args:
        a (int): The first number.
        b (int): The second number.
    Returns:
        int: The product of the two numbers.
    """
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two numbers and return the result.
    Args:
        a (int): The first number.
        b (int): The second number.
    Returns:
        int: The sum of the two numbers.
    """
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract two numbers and return the result.
    Args:
        a (int): The first number.
        b (int): The second number.
    Returns:
        int: The difference between the two numbers.
    """
    return a - b

@tool
def divide(a: int, b: int) -> int:
    """Divide two numbers and return the result.
    Args:
        a (int): The first number.
        b (int): The second number.
    Returns:
        int: The quotient of the two numbers.
    """
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Calculate the modulus of two numbers and return the result.
    Args:
        a (int): The first number.
        b (int): The second number.
    Returns:
        int: The modulus of the two numbers.
    """
    return a % b

@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a given query and return the top result.
    Args:
        query (str): The search query.
    """
    search_docs = WikipediaLoader(query, load_max_docs=2).load()
    formatted_search_docs = '\n\n---\n\n'.join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}">\n{doc.page_content}\n</Document>' for doc in search_docs
        ]
    )
    return {'wiki_results': formatted_search_docs}

@tool
def web_search(query: str) -> str:
    """Search Tavily for a query and return maximum 3 results

    Args:
        query (str): The search query.
    """
    search_docs = TavilySearchResults(max_results=3).invoke(query)
    formatted_search_docs = '\n\n---\n\n'.join(
        [
            f'<Document source="{doc["url"]}" page="{doc.get("title", "")}">\n{doc.get("content", "")}\n</Document>' for doc in search_docs
        ]
    )
    return {'web_results': formatted_search_docs}

@tool
def arvix_search(query: str) -> str:
    """Search Arvix for a query and return maximum 3 results

    Args:
        query (str): The search query.
    """
    search_docs = ArxivLoader(query, load_max_docs=3).load()
    formatted_search_docs = '\n\n---\n\n'.join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}">\n{doc.page_content}\n</Document>' for doc in search_docs
        ]
    )
    return {'arvix_results': formatted_search_docs}


# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()


# System message
sys_msg = SystemMessage(content=system_prompt)

# Retriever
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-small-en-v1.5")

# vector_store = Chroma(
#     collection_name="demo_collection",
#     embedding_function=embeddings,
#     persist_directory="./chroma_langchain_db",
# )

embedding_dim = len(embeddings.embed_query("hello world"))
index = faiss.IndexFlatL2(embedding_dim)

vector_store = FAISS(
    embedding_function=embeddings,
    index=index,
    docstore=InMemoryDocstore(),
    index_to_docstore_id={},
)
create_retriever_tool = create_retriever_tool(
    retriever= vector_store.as_retriever(),
    name='Question Search',
    description='A tool to retrieve similar question from vector store.'
)


tools = [
    multiply,
    add,
    subtract,
    modulus,
    wiki_search,
    web_search,
    arvix_search
]

# build graph function
def build_graph(tag: str='huggingface'):
    """Build the graph"""

    if tag == 'local':
        llm = ChatOllama(model="qwen3")
    elif tag == 'google':
        # Google Gemini
        llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
    elif tag == "huggingface":
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen3-14B"),
            temperature=0,
        )
    else:
        raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
    # bind tools to llm
    llm_with_tools = llm.bind_tools(tools)

    def assistant(state: MessagesState):
        return {'messages': [llm_with_tools.invoke(state['messages'])]}

    def retriever(state: MessagesState):
        similar_question = vector_store.similarity_search(state['messages'][0].content)
        example_msg = HumanMessage(
            content=f''
        )
        return {'messages': [sys_msg] + state['messages'] + [example_msg]}

    builder = StateGraph(MessagesState)
    builder.add_node('retriever', retriever)
    builder.add_node('assistant', assistant)
    builder.add_node('tools', ToolNode(tools))
    builder.add_edge(START, 'retriever')
    builder.add_edge('retriever', 'assistant')
    builder.add_conditional_edges(
        'assistant',
        tools_condition
    )
    builder.add_edge('tools', 'assistant')

    # builder.set_entry_point("retriever")
    # builder.set_finish_point("retriever")

    return builder.compile()


# test
if __name__ == "__main__":
    question = 'When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?'
    # build the graph
    graph = build_graph('local')
    # run the graph
    messages = [HumanMessage(content=question)]
    messages = graph.invoke({'messages': messages})
    for m in messages['messages']:
        m.pretty_print()