Spaces:
Sleeping
Sleeping
File size: 6,708 Bytes
957b75b f43e234 957b75b 87d766a 957b75b 021d17f 957b75b f43e234 957b75b f43e234 957b75b 021d17f 957b75b 021d17f 44c0550 957b75b 021d17f 957b75b 6a76c14 021d17f 957b75b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import ArxivLoader
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_ollama import ChatOllama
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_huggingface import HuggingFaceEmbeddings, ChatHuggingFace, HuggingFaceEndpoint
from langgraph.graph import START, StateGraph, MessagesState
# from langchain_chroma import Chroma
import faiss
from langchain_community.docstore.in_memory import InMemoryDocstore
from langchain_community.vectorstores import FAISS
from langgraph.prebuilt import ToolNode
from langgraph.prebuilt import tools_condition
import os
from dotenv import load_dotenv
load_dotenv()
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers and return the result.
Args:
a (int): The first number.
b (int): The second number.
Returns:
int: The product of the two numbers.
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers and return the result.
Args:
a (int): The first number.
b (int): The second number.
Returns:
int: The sum of the two numbers.
"""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers and return the result.
Args:
a (int): The first number.
b (int): The second number.
Returns:
int: The difference between the two numbers.
"""
return a - b
@tool
def divide(a: int, b: int) -> int:
"""Divide two numbers and return the result.
Args:
a (int): The first number.
b (int): The second number.
Returns:
int: The quotient of the two numbers.
"""
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Calculate the modulus of two numbers and return the result.
Args:
a (int): The first number.
b (int): The second number.
Returns:
int: The modulus of the two numbers.
"""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a given query and return the top result.
Args:
query (str): The search query.
"""
search_docs = WikipediaLoader(query, load_max_docs=2).load()
formatted_search_docs = '\n\n---\n\n'.join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}">\n{doc.page_content}\n</Document>' for doc in search_docs
]
)
return {'wiki_results': formatted_search_docs}
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results
Args:
query (str): The search query.
"""
search_docs = TavilySearchResults(max_results=3).invoke(query)
formatted_search_docs = '\n\n---\n\n'.join(
[
f'<Document source="{doc["url"]}" page="{doc.get("title", "")}">\n{doc.get("content", "")}\n</Document>' for doc in search_docs
]
)
return {'web_results': formatted_search_docs}
@tool
def arvix_search(query: str) -> str:
"""Search Arvix for a query and return maximum 3 results
Args:
query (str): The search query.
"""
search_docs = ArxivLoader(query, load_max_docs=3).load()
formatted_search_docs = '\n\n---\n\n'.join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}">\n{doc.page_content}\n</Document>' for doc in search_docs
]
)
return {'arvix_results': formatted_search_docs}
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# System message
sys_msg = SystemMessage(content=system_prompt)
# Retriever
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-small-en-v1.5")
# vector_store = Chroma(
# collection_name="demo_collection",
# embedding_function=embeddings,
# persist_directory="./chroma_langchain_db",
# )
embedding_dim = len(embeddings.embed_query("hello world"))
index = faiss.IndexFlatL2(embedding_dim)
vector_store = FAISS(
embedding_function=embeddings,
index=index,
docstore=InMemoryDocstore(),
index_to_docstore_id={},
)
create_retriever_tool = create_retriever_tool(
retriever= vector_store.as_retriever(),
name='Question Search',
description='A tool to retrieve similar question from vector store.'
)
tools = [
multiply,
add,
subtract,
modulus,
wiki_search,
web_search,
arvix_search
]
# build graph function
def build_graph(tag: str='huggingface'):
"""Build the graph"""
if tag == 'local':
llm = ChatOllama(model="qwen3")
elif tag == 'google':
# Google Gemini
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif tag == "huggingface":
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen3-14B"),
temperature=0,
)
else:
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
# bind tools to llm
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
return {'messages': [llm_with_tools.invoke(state['messages'])]}
def retriever(state: MessagesState):
similar_question = vector_store.similarity_search(state['messages'][0].content)
example_msg = HumanMessage(
content=f''
)
return {'messages': [sys_msg] + state['messages'] + [example_msg]}
builder = StateGraph(MessagesState)
builder.add_node('retriever', retriever)
builder.add_node('assistant', assistant)
builder.add_node('tools', ToolNode(tools))
builder.add_edge(START, 'retriever')
builder.add_edge('retriever', 'assistant')
builder.add_conditional_edges(
'assistant',
tools_condition
)
builder.add_edge('tools', 'assistant')
# builder.set_entry_point("retriever")
# builder.set_finish_point("retriever")
return builder.compile()
# test
if __name__ == "__main__":
question = 'When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?'
# build the graph
graph = build_graph('local')
# run the graph
messages = [HumanMessage(content=question)]
messages = graph.invoke({'messages': messages})
for m in messages['messages']:
m.pretty_print()
|