import torch import requests import gradio as gr from PIL import Image from transformers import AutoImageProcessor, ResNetForImageClassification target_folder = "JungminChung/India_ResNet" def load_model_and_preprocessor(target_folder): model = ResNetForImageClassification.from_pretrained(target_folder) image_processor = AutoImageProcessor.from_pretrained(target_folder) return model, image_processor def fetch_image(url): headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36' } image_raw = requests.get(url, headers=headers, stream=True).raw image = Image.open(image_raw) return image def infer_image(image, model, image_processor, k): processed_img = image_processor(images=image.convert("RGB"), return_tensors="pt") with torch.no_grad(): outputs = model(**processed_img) logits = outputs.logits prob = torch.nn.functional.softmax(logits, dim=-1) topk_prob, topk_indices = torch.topk(prob, k=k) res = "" for idx, (prob, index) in enumerate(zip(topk_prob[0], topk_indices[0])): res += f"{idx+1}. {model.config.id2label[index.item()]:<15} ({prob.item()*100:.2f} %) \n" return res def infer(url, k, target_folder=target_folder): try : image = fetch_image(url) model, image_processor = load_model_and_preprocessor(target_folder) res = infer_image(image, model, image_processor, k) except : image = Image.new('RGB', (224, 224)) res = "이미지를 불러오는데 문제가 있나봐요. 다른 이미지 url로 다시 시도해주세요." return image, res demo = gr.Interface( fn=infer, inputs=[ gr.Textbox(value="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRpE-UHBp8ZufNUd3BKw8gtIxSe3IUwspOfqw&s", label="Image URL"), gr.Slider(minimum=0, maximum=20, step=1, value=3, label="상위 몇개까지 보여줄까요?") ], outputs=[ gr.Image(type="pil", label="입력 이미지"), gr.Textbox(label="종류 (확률)") ], ) demo.launch() # demo.launch(share=True)