Spaces:
Runtime error
Runtime error
import pandas as pd | |
import numpy as np | |
import streamlit as st | |
# import glob | |
# import yaml | |
from pathlib import Path | |
from collections import defaultdict | |
######################################### | |
# Helpers Functions | |
display_cols = ['image','name', 'color', 'star', 'class', 'speed', 'power', 'attack', 'defense', 'health', 'types', 'source', 'family'] | |
def filter_by_1col(df, col_name, query, exact_flag=False): | |
def check_valid_value(query, string, exact_flag=False): | |
if exact_flag: | |
if query.lower() == string.lower(): | |
return True | |
elif query.lower() in string.lower(): | |
return True | |
return False | |
ok_flag_list = [] | |
assert col_name in df.columns, "col_name must be valid" | |
for i, s in enumerate(df[col_name]): | |
if isinstance(s, list): | |
for s2 in s: | |
flag = check_valid_value(query, s2, exact_flag=exact_flag) | |
if flag: break | |
else: | |
flag = check_valid_value(query, s, exact_flag=exact_flag) | |
ok_flag_list.append(flag) | |
assert len(ok_flag_list) == len(df) | |
return np.array(ok_flag_list) | |
def display_image(url, scale=0.5): | |
from urllib.request import urlopen | |
from PIL import Image | |
image = Image.open(urlopen(url)) | |
st.image(image.resize(( int(image.width * scale), int(image.height * scale)))) | |
def display_heroes_from_df(df): | |
st.dataframe(df[display_cols], | |
column_config={ | |
"image": st.column_config.ImageColumn("Avatar", help="")}, | |
use_container_width=True, | |
hide_index=True) | |
for i in range(len(df)): | |
url = df['image'].values[i] | |
display_image(url) | |
st.write(df['skill'].values[i]) | |
st.write(df['effects'].values[i]) | |
# for sp in df['effects'].values[i]: | |
# st.write(sp) | |
######################################### | |
## Load the main file (TODO: caching)= | |
st.set_page_config(layout="wide") | |
df = pd.read_csv('heroes_ep.csv') | |
class_values = ['None'] + list(df['class'].unique()) | |
star_values = ['None'] + list(df['star'].unique()) | |
color_values = ['None'] + list(df['color'].unique()) | |
speed_values = ['None'] + list(df['speed'].unique()) | |
source_values = ['None'] + list(df['source'].unique()) | |
######################################### | |
## Select options | |
## TODO: family, costume | |
with st.sidebar: | |
st.title('Filter Options') | |
name_option = st.text_input(label="Name:", value="") | |
# star_option = st.selectbox(label='Speed:', options=star_values, index=5) | |
color_option = st.selectbox(label='Color:', options=color_values, index=0) | |
speed_option = st.selectbox(label='Speed:', options=speed_values, index=0) | |
class_option = st.selectbox(label='Class:', options=class_values, index=0) | |
source_option = st.selectbox(label='Origin:', options=source_values, index=0) | |
special_type_option = st.text_input(label="SpecialSkill Category", value="Hit 3") | |
special_text_option = st.text_input(label="SpecialSkill Text", value="Dispel") | |
st.title('Sorted By') | |
sort_option = st.selectbox(label='Sort by', options=display_cols[1:], index=0) | |
idx_all = [] | |
if name_option != '': | |
idx_all.append(filter_by_1col(df, 'name', name_option, exact_flag=False)) | |
# if star_option is not None: | |
# idx_all.append(filter_by_1col(df, 'star', star_option, exact_flag=False)) | |
if speed_option != 'None': | |
idx_all.append(filter_by_1col(df, 'speed', speed_option, exact_flag=True)) | |
if color_option != 'None': | |
idx_all.append(filter_by_1col(df, 'color', color_option, exact_flag=False)) | |
if class_option != 'None': | |
idx_all.append(filter_by_1col(df, 'class', class_option, exact_flag=False)) | |
if source_option != 'None': | |
idx_all.append(filter_by_1col(df, 'source', source_option, exact_flag=False)) | |
if special_type_option != '': | |
idx_all.append(filter_by_1col(df, 'types', special_type_option, exact_flag=False)) | |
if special_text_option != '': | |
idx_all.append(filter_by_1col(df, 'effects', special_text_option, exact_flag=False)) | |
######################################### | |
df2 = df[np.all(idx_all,axis=0)] | |
display_heroes_from_df(df2.sort_values(sort_option, ascending=False)) |