import copy import logging import numpy as np import torch from detectron2.data import detection_utils as utils from detectron2.data import transforms as T from detectron2.data.transforms import TransformGen from detectron2.structures import BoxMode from PIL import Image __all__ = ["SWINTSDatasetMapper"] def build_transform_gen(cfg, is_train): """ Create a list of :class:`TransformGen` from config. Returns: list[TransformGen] """ if is_train: min_size = cfg.INPUT.MIN_SIZE_TRAIN max_size = cfg.INPUT.MAX_SIZE_TRAIN sample_style = cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING else: min_size = cfg.INPUT.MIN_SIZE_TEST max_size = cfg.INPUT.MAX_SIZE_TEST sample_style = "choice" if sample_style == "range": assert len(min_size) == 2, "more than 2 ({}) min_size(s) are provided for ranges".format(len(min_size)) logger = logging.getLogger(__name__) tfm_gens = [] tfm_gens.append(T.RandomBrightness(0.5,2)) tfm_gens.append(T.RandomContrast(0.5,2)) tfm_gens.append(T.RandomSaturation(0.5,2)) tfm_gens.append(T.ResizeShortestEdge(min_size, max_size, sample_style)) if is_train: logger.info("TransformGens used in training: " + str(tfm_gens)) return tfm_gens @torch.no_grad() class SWINTSDatasetMapper: """ A callable which takes a dataset dict in Detectron2 Dataset format, and map it into a format used by SparseRCNN. The callable currently does the following: 1. Read the image from "file_name" 2. Applies geometric transforms to the image and annotation 3. Find and applies suitable cropping to the image and annotation 4. Prepare image and annotation to Tensors """ def __init__(self, cfg, is_train=True): if cfg.INPUT.CROP.ENABLED and is_train: self.crop_gen = [ #T.ResizeShortestEdge([400, 500, 600], sample_style="choice"), #T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE), T.RandomCropWithInstance( cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE, cfg.INPUT.CROP.CROP_INSTANCE ) ] self.rotate_gen = [ T.RandomRotation(angle=[-90,90],sample_style="range") ] else: self.crop_gen = None self.tfm_gens = build_transform_gen(cfg, is_train) logging.getLogger(__name__).info( "Full TransformGens used in training: {}, crop: {}".format(str(self.tfm_gens), str(self.crop_gen)) ) self.img_format = cfg.INPUT.FORMAT self.is_train = is_train def __call__(self, dataset_dict): """ Args: dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. Returns: dict: a format that builtin models in detectron2 accept """ dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below image = utils.read_image(dataset_dict["file_name"], format=self.img_format) utils.check_image_size(dataset_dict, image) boxes = np.asarray( [ BoxMode.convert( instance["bbox"], instance["bbox_mode"], BoxMode.XYXY_ABS ) for instance in dataset_dict["annotations"] ] ) augmentation = [] if self.crop_gen is None: image, transforms = T.apply_transform_gens(self.tfm_gens, image) else: if np.random.rand() > 0.5: augmentation = self.tfm_gens[:-1] + self.crop_gen + self.tfm_gens[-1:] else: augmentation = self.tfm_gens if np.random.rand() > 0.5: augmentation = augmentation[:-1] + self.rotate_gen + augmentation[-1:] aug_input = T.StandardAugInput(image, boxes=boxes) transforms = aug_input.apply_augmentations(augmentation) image = aug_input.image image_shape = image.shape[:2] # h, w # print(image_shape) # Pytorch's dataloader is efficient on torch.Tensor due to shared-memory, # but not efficient on large generic data structures due to the use of pickle & mp.Queue. # Therefore it's important to use torch.Tensor. dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1))) if not self.is_train: # USER: Modify this if you want to keep them for some reason. dataset_dict.pop("annotations", None) return dataset_dict if "annotations" in dataset_dict: # USER: Modify this if you want to keep them for some reason. for anno in dataset_dict["annotations"]: # anno.pop("segmentation", None) anno.pop("keypoints", None) # USER: Implement additional transformations if you have other types of data annos = [ utils.transform_instance_annotations(obj, transforms, image_shape) for obj in dataset_dict.pop("annotations") if obj.get("iscrowd", 0) == 0 ] instances = utils.annotations_to_instances(annos, image_shape) dataset_dict["instances"] = utils.filter_empty_instances(instances) return dataset_dict