multimodal-bot
Browse files
app.py
CHANGED
|
@@ -1,58 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import os
|
| 3 |
-
import time
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
-
def
|
| 10 |
-
history = history + [(text, None)]
|
| 11 |
-
return history, gr.Textbox(value="", interactive=False)
|
| 12 |
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
|
| 27 |
-
|
| 28 |
-
with gr.Blocks() as demo:
|
| 29 |
-
chatbot = gr.Chatbot(
|
| 30 |
-
[],
|
| 31 |
-
elem_id="chatbot",
|
| 32 |
-
bubble_full_width=False,
|
| 33 |
-
avatar_images=(None, (os.path.join(os.path.abspath(''), "avatar.png"))),
|
| 34 |
-
)
|
| 35 |
-
|
| 36 |
-
with gr.Row():
|
| 37 |
-
txt = gr.Textbox(
|
| 38 |
-
scale=4,
|
| 39 |
-
show_label=False,
|
| 40 |
-
placeholder="Enter text and press enter, or upload an image",
|
| 41 |
-
container=False,
|
| 42 |
-
)
|
| 43 |
-
btn = gr.UploadButton("📁", file_types=["image", "video", "audio"])
|
| 44 |
-
|
| 45 |
-
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
|
| 46 |
-
bot, chatbot, chatbot, api_name="bot_response"
|
| 47 |
-
)
|
| 48 |
-
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
|
| 49 |
-
file_msg = btn.upload(add_file, [chatbot, btn], [chatbot], queue=False).then(
|
| 50 |
-
bot, chatbot, chatbot
|
| 51 |
-
)
|
| 52 |
-
|
| 53 |
-
chatbot.like(print_like_dislike, None, None)
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
demo.queue()
|
| 57 |
-
if __name__ == "__main__":
|
| 58 |
-
demo.launch()
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
from PIL import Image
|
| 4 |
import gradio as gr
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 7 |
+
"MILVLG/imp-v1-3b",
|
| 8 |
+
torch_dtype=torch.float16,
|
| 9 |
+
device_map="auto",
|
| 10 |
+
trust_remote_code=True)
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained("MILVLG/imp-v1-3b", trust_remote_code=True)
|
| 12 |
|
| 13 |
|
| 14 |
+
def generate_answer(text, image):
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
input_ids = tokenizer(text, return_tensors='pt').input_ids
|
| 17 |
+
image_tensor = model.image_preprocess(image)
|
| 18 |
|
| 19 |
+
output_ids = model.generate(
|
| 20 |
+
input_ids,
|
| 21 |
+
max_new_tokens=100,
|
| 22 |
+
images=image_tensor,
|
| 23 |
+
use_cache=True)[0]
|
| 24 |
+
|
| 25 |
+
return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
| 26 |
|
| 27 |
+
text_input = gr.Textbox(lines=5, label="Enter text")
|
| 28 |
+
image_input = gr.Image(shape=(224, 224), label="Upload Image")
|
| 29 |
|
| 30 |
+
iface = gr.Interface(
|
| 31 |
+
fn=generate_answer,
|
| 32 |
+
inputs=[text_input, image_input],
|
| 33 |
+
outputs="text",
|
| 34 |
+
title="DD360-Bot-Multimodal",
|
| 35 |
+
description="Enter text and upload an image to receive a response from the chatbot."
|
| 36 |
+
)
|
| 37 |
|
| 38 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|