Spaces:
Running
Running
File size: 6,899 Bytes
e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 e2b757a f2a23c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
# %%
import json
import pickle as pk
import random
import threading
from datetime import datetime
import gradio as gr
import numpy as np
from display import display_words
from gensim.models import KeyedVectors
from pistas import curiosity, hint
from seguimiento import calculate_moving_average, calculate_tendency_slope
from sentence_transformers import SentenceTransformer
model = KeyedVectors(768)
model_st = SentenceTransformer(
"sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
)
embeddings_dict = {}
config_file_path = "config/lang.json"
secret_file_path = "config/secret.json"
class DictWrapper:
def __init__(self, data_dict):
self.__dict__.update(data_dict)
with open(config_file_path, "r") as file:
Config_full = json.load(file)
with open(secret_file_path, "r") as file:
secret = json.load(file)
lang = 0
if lang == 0:
Config = DictWrapper(Config_full["SPA"]["Game"])
secret_dict = secret["SPA"]
elif lang == 1:
Config = DictWrapper(Config_full["ENG"]["Game"])
secret_dict = secret["ENG"]
else:
Config = DictWrapper(Config_full["SPA"]["Game"])
secret_dict = secret["SPA"]
with open("ranking.txt", "w+") as file:
file.write("---------------------------")
pca = pk.load(open("pca_mpnet.pkl", "rb"))
print(Config.Difficulty_presentation_Full)
difficulty = int(input(Config.Difficulty + ": "))
secret_list = secret_dict["basic"] if difficulty <= 2 else secret_dict["advanced"]
secret = secret_list.pop(random.randint(0, len(secret_list) - 1))
secret = secret.lower()
words = [Config.secret_word]
scores = [10]
if secret not in embeddings_dict.keys():
embeddings_dict[secret] = model_st.encode(secret, convert_to_tensor=True)
model.add_vector(secret, embeddings_dict[secret].tolist())
word_vect = [embeddings_dict[secret].tolist()]
thread = threading.Thread(
target=display_words, args=(words, pca.transform(word_vect), scores, -1)
)
thread.start()
def preproc_vectors(words, word_vect, scores, repeated):
ascending_indices = np.argsort(scores)
descending_indices = list(ascending_indices[::-1])
ranking_data = []
k = len(words) - 1
if repeated != -1:
k = repeated
ranking_data.append(["#" + str(k), words[k], scores[k]])
ranking_data.append("---------------------------")
for i in descending_indices:
if i == 0:
continue
ranking_data.append(["#" + str(i), words[i], scores[i]])
with open("ranking.txt", "w+") as file:
for item in ranking_data:
file.write("%s\n" % item)
if len(words) > 11:
if k in descending_indices[:11]:
descending_indices = descending_indices[:11]
else:
descending_indices = descending_indices[:11]
descending_indices.append(k)
words_display = [words[i] for i in descending_indices]
displayvect_display = pca.transform([word_vect[i] for i in descending_indices])
scores_display = [scores[i] for i in descending_indices]
bold = descending_indices.index(k)
else:
words_display = words
displayvect_display = pca.transform(word_vect)
scores_display = scores
bold = k
return (
words_display,
displayvect_display,
scores_display,
bold,
)
win = False
n = 0
recent_hint = 0
f_dev_avg = 0
last_hint = -1
if difficulty == 1:
n = 3
def play_game(word):
global win, n, recent_hint, f_dev_avg, last_hint, words, word_vect, scores, thread
word = word.lower()
if word == "give_up":
return "Game Over"
if word in words:
repeated = words.index(word)
else:
repeated = -1
words.append(word)
thread.join()
if word not in embeddings_dict.keys():
embedding = model_st.encode(word, convert_to_tensor=True)
embeddings_dict[word] = embedding
model.add_vector(word, embedding.tolist())
if repeated == -1:
word_vect.append(embeddings_dict[word].tolist())
score = round(model.similarity(secret, word) * 10, 2)
if repeated == -1:
scores.append(score)
if score <= 2.5:
feedback = Config.Feedback_0 + str(score)
elif score > 2.5 and score <= 4.0:
feedback = Config.Feedback_1 + str(score)
elif score > 4.0 and score <= 6.0:
feedback = Config.Feedback_2 + str(score)
elif score > 6.0 and score <= 7.5:
feedback = Config.Feedback_3 + str(score)
elif score > 7.5 and score <= 8.0:
feedback = Config.Feedback_4 + str(score)
elif score > 8.0 and score < 10.0:
feedback = Config.Feedback_5 + str(score)
else:
win = True
feedback = Config.Feedback_8
words[0] = secret
words.pop(len(words) - 1)
word_vect.pop(len(word_vect) - 1)
scores.pop(len(scores) - 1)
if score > scores[len(scores) - 2] and win == False:
feedback += "\n" + Config.Feedback_6
elif score < scores[len(scores) - 2] and win == False:
feedback += "\n" + Config.Feedback_7
if difficulty != 4:
mov_avg = calculate_moving_average(scores[1:], 5)
if len(mov_avg) > 1 and win == False:
f_dev = calculate_tendency_slope(mov_avg)
f_dev_avg = calculate_moving_average(f_dev, 3)
if f_dev_avg[len(f_dev_avg) - 1] < 0 and recent_hint == 0:
i = random.randint(0, len(Config.hint_intro) - 1)
feedback += "\n\n" + Config.hint_intro[i]
hint_text, n, last_hint = hint(
secret,
n,
model_st,
last_hint,
lang,
(
DictWrapper(Config_full["SPA"]["Hint"])
if lang == 0
else DictWrapper(Config_full["ENG"]["Hint"])
),
)
feedback += "\n" + hint_text
recent_hint = 3
if recent_hint != 0:
recent_hint -= 1
(
words_display,
displayvect_display,
scores_display,
bold_display,
) = preproc_vectors(words, word_vect, scores, repeated)
if win:
bold_display = 0
thread = threading.Thread(
target=display_words,
args=(words_display, displayvect_display, scores_display, bold_display),
)
thread.start()
if win:
feedback += "\nCongratulations! You guessed the secret word."
return feedback
def gradio_interface():
return gr.Interface(
fn=play_game,
inputs="text",
outputs="text",
title="Secret Word Game",
description="Guess the secret word!",
examples=[
["apple"],
["banana"],
["cherry"],
],
)
if __name__ == "__main__":
gradio_interface().launch()
|