File size: 6,899 Bytes
e2b757a
 
 
 
 
 
 
f2a23c8
e2b757a
 
f2a23c8
e2b757a
 
f2a23c8
e2b757a
 
 
 
 
f2a23c8
e2b757a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2a23c8
e2b757a
 
f2a23c8
e2b757a
 
f2a23c8
e2b757a
 
 
 
 
 
 
 
f2a23c8
 
e2b757a
 
 
 
 
 
f2a23c8
e2b757a
 
f2a23c8
 
 
e2b757a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2a23c8
e2b757a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2a23c8
 
 
 
 
e2b757a
f2a23c8
 
e2b757a
 
 
 
 
 
 
 
f2a23c8
 
 
 
 
e2b757a
 
 
 
 
 
f2a23c8
e2b757a
f2a23c8
 
e2b757a
f2a23c8
e2b757a
f2a23c8
e2b757a
f2a23c8
e2b757a
f2a23c8
e2b757a
f2a23c8
e2b757a
 
f2a23c8
e2b757a
 
 
 
 
 
f2a23c8
e2b757a
f2a23c8
e2b757a
 
 
 
 
 
 
 
f2a23c8
 
e2b757a
 
 
 
 
 
f2a23c8
 
 
 
 
e2b757a
f2a23c8
e2b757a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2a23c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2b757a
 
f2a23c8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# %%
import json
import pickle as pk
import random
import threading
from datetime import datetime

import gradio as gr
import numpy as np
from display import display_words
from gensim.models import KeyedVectors
from pistas import curiosity, hint
from seguimiento import calculate_moving_average, calculate_tendency_slope
from sentence_transformers import SentenceTransformer

model = KeyedVectors(768)
model_st = SentenceTransformer(
    "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
)

embeddings_dict = {}

config_file_path = "config/lang.json"
secret_file_path = "config/secret.json"


class DictWrapper:
    def __init__(self, data_dict):
        self.__dict__.update(data_dict)


with open(config_file_path, "r") as file:
    Config_full = json.load(file)

with open(secret_file_path, "r") as file:
    secret = json.load(file)

lang = 0

if lang == 0:
    Config = DictWrapper(Config_full["SPA"]["Game"])
    secret_dict = secret["SPA"]
elif lang == 1:
    Config = DictWrapper(Config_full["ENG"]["Game"])
    secret_dict = secret["ENG"]
else:
    Config = DictWrapper(Config_full["SPA"]["Game"])
    secret_dict = secret["SPA"]


with open("ranking.txt", "w+") as file:
    file.write("---------------------------")

pca = pk.load(open("pca_mpnet.pkl", "rb"))

print(Config.Difficulty_presentation_Full)
difficulty = int(input(Config.Difficulty + ": "))

secret_list = secret_dict["basic"] if difficulty <= 2 else secret_dict["advanced"]

secret = secret_list.pop(random.randint(0, len(secret_list) - 1))
secret = secret.lower()

words = [Config.secret_word]
scores = [10]

if secret not in embeddings_dict.keys():
    embeddings_dict[secret] = model_st.encode(secret, convert_to_tensor=True)
    model.add_vector(secret, embeddings_dict[secret].tolist())

word_vect = [embeddings_dict[secret].tolist()]

thread = threading.Thread(
    target=display_words, args=(words, pca.transform(word_vect), scores, -1)
)
thread.start()


def preproc_vectors(words, word_vect, scores, repeated):
    ascending_indices = np.argsort(scores)
    descending_indices = list(ascending_indices[::-1])
    ranking_data = []
    k = len(words) - 1
    if repeated != -1:
        k = repeated

    ranking_data.append(["#" + str(k), words[k], scores[k]])

    ranking_data.append("---------------------------")
    for i in descending_indices:
        if i == 0:
            continue
        ranking_data.append(["#" + str(i), words[i], scores[i]])

    with open("ranking.txt", "w+") as file:
        for item in ranking_data:
            file.write("%s\n" % item)

    if len(words) > 11:
        if k in descending_indices[:11]:
            descending_indices = descending_indices[:11]
        else:
            descending_indices = descending_indices[:11]
            descending_indices.append(k)
        words_display = [words[i] for i in descending_indices]
        displayvect_display = pca.transform([word_vect[i] for i in descending_indices])
        scores_display = [scores[i] for i in descending_indices]
        bold = descending_indices.index(k)

    else:
        words_display = words
        displayvect_display = pca.transform(word_vect)
        scores_display = scores
        bold = k

    return (
        words_display,
        displayvect_display,
        scores_display,
        bold,
    )


win = False
n = 0
recent_hint = 0
f_dev_avg = 0
last_hint = -1

if difficulty == 1:
    n = 3


def play_game(word):
    global win, n, recent_hint, f_dev_avg, last_hint, words, word_vect, scores, thread

    word = word.lower()
    if word == "give_up":
        return "Game Over"

    if word in words:
        repeated = words.index(word)
    else:
        repeated = -1
        words.append(word)

    thread.join()

    if word not in embeddings_dict.keys():
        embedding = model_st.encode(word, convert_to_tensor=True)
        embeddings_dict[word] = embedding
        model.add_vector(word, embedding.tolist())

    if repeated == -1:
        word_vect.append(embeddings_dict[word].tolist())

    score = round(model.similarity(secret, word) * 10, 2)

    if repeated == -1:
        scores.append(score)

    if score <= 2.5:
        feedback = Config.Feedback_0 + str(score)
    elif score > 2.5 and score <= 4.0:
        feedback = Config.Feedback_1 + str(score)
    elif score > 4.0 and score <= 6.0:
        feedback = Config.Feedback_2 + str(score)
    elif score > 6.0 and score <= 7.5:
        feedback = Config.Feedback_3 + str(score)
    elif score > 7.5 and score <= 8.0:
        feedback = Config.Feedback_4 + str(score)
    elif score > 8.0 and score < 10.0:
        feedback = Config.Feedback_5 + str(score)
    else:
        win = True
        feedback = Config.Feedback_8
        words[0] = secret
        words.pop(len(words) - 1)
        word_vect.pop(len(word_vect) - 1)
        scores.pop(len(scores) - 1)

    if score > scores[len(scores) - 2] and win == False:
        feedback += "\n" + Config.Feedback_6
    elif score < scores[len(scores) - 2] and win == False:
        feedback += "\n" + Config.Feedback_7

    if difficulty != 4:
        mov_avg = calculate_moving_average(scores[1:], 5)

        if len(mov_avg) > 1 and win == False:
            f_dev = calculate_tendency_slope(mov_avg)
            f_dev_avg = calculate_moving_average(f_dev, 3)
            if f_dev_avg[len(f_dev_avg) - 1] < 0 and recent_hint == 0:
                i = random.randint(0, len(Config.hint_intro) - 1)
                feedback += "\n\n" + Config.hint_intro[i]
                hint_text, n, last_hint = hint(
                    secret,
                    n,
                    model_st,
                    last_hint,
                    lang,
                    (
                        DictWrapper(Config_full["SPA"]["Hint"])
                        if lang == 0
                        else DictWrapper(Config_full["ENG"]["Hint"])
                    ),
                )
                feedback += "\n" + hint_text
                recent_hint = 3

        if recent_hint != 0:
            recent_hint -= 1

    (
        words_display,
        displayvect_display,
        scores_display,
        bold_display,
    ) = preproc_vectors(words, word_vect, scores, repeated)

    if win:
        bold_display = 0

    thread = threading.Thread(
        target=display_words,
        args=(words_display, displayvect_display, scores_display, bold_display),
    )
    thread.start()

    if win:
        feedback += "\nCongratulations! You guessed the secret word."

    return feedback


def gradio_interface():
    return gr.Interface(
        fn=play_game,
        inputs="text",
        outputs="text",
        title="Secret Word Game",
        description="Guess the secret word!",
        examples=[
            ["apple"],
            ["banana"],
            ["cherry"],
        ],
    )


if __name__ == "__main__":
    gradio_interface().launch()