import streamlit as st from transformers import pipeline # loarding pipeline sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english") ner_tagger = pipeline("ner", model="dslim/bert-base-NER", grouped_entities=True) st.set_page_config(page_title="Customer Support Analyzer", layout="centered") st.title("📞 AI Customer service Dialogue Analysis") # Customer type user_input = st.text_area("Please enter the question or conversation:", height=150) if st.button("Analyse"): if user_input.strip() == "": st.warning("Please enter content") else: with st.spinner("Analysing..."): # Emotion sentiment_result = sentiment_analyzer(user_input)[0] st.subheader("📌 Sentiment analysis results") st.write(f"**Emotional type**: {sentiment_result['label']}") st.write(f"**Confidence degree**: {sentiment_result['score']:.2f}") # Command ner_results = ner_tagger(user_input) extracted_entities = [ent['word'] for ent in ner_results if ent['score'] > 0.5] st.subheader("🔍Problem keyword recognition") if extracted_entities: st.write(", ".join(set(extracted_entities))) else: st.write("The specific problem keywords were not identified")