Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,14 +5,10 @@ from huggingface_hub import login
|
|
5 |
|
6 |
login(os.environ["HF_TOKEN"])
|
7 |
|
8 |
-
|
9 |
-
# Load models
|
10 |
emotion_classifier = pipeline("text-classification", model="shengqizhao0124/emotion_trainer", return_all_scores=True)
|
11 |
intent_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
12 |
text_generator = pipeline("text2text-generation", model="declare-lab/flan-alpaca-base")
|
13 |
|
14 |
-
|
15 |
-
# Intent categories
|
16 |
candidate_tasks = [
|
17 |
"change mobile plan", "top up balance", "report service outage",
|
18 |
"ask for billing support", "reactivate service", "cancel subscription",
|
@@ -48,7 +44,6 @@ def get_emotion_score(emotion):
|
|
48 |
else:
|
49 |
return 0.2
|
50 |
|
51 |
-
# β
Simplified fixed-format auto-reply
|
52 |
def generate_response(intent, human=True):
|
53 |
if human:
|
54 |
prompt = (
|
@@ -60,7 +55,6 @@ def generate_response(intent, human=True):
|
|
60 |
else:
|
61 |
return f"[Below is a link to the service you needοΌ{intent} β https://support.example.com/{intent.replace(' ', '_')}]\\n[If your problem still can not be solved, welcome to continue to consult, we will continue to serve you!]"
|
62 |
|
63 |
-
# Streamlit App
|
64 |
st.set_page_config(page_title="Smart Customer Support Assistant", layout="wide")
|
65 |
st.sidebar.title("π Customer Selector")
|
66 |
|
@@ -80,25 +74,28 @@ if selected_customer not in st.session_state.chat_sessions:
|
|
80 |
session = st.session_state.chat_sessions[selected_customer]
|
81 |
st.title("Smart Customer Support Assistant (for Agents Only)")
|
82 |
|
83 |
-
#
|
84 |
st.markdown("### Conversation")
|
85 |
for msg in session["chat"]:
|
86 |
avatar = "π€" if msg['role'] == 'user' else ("π€" if msg.get("auto") else "π¨βπΌ")
|
87 |
with st.chat_message(msg['role'], avatar=avatar):
|
|
|
|
|
88 |
st.markdown(msg['content'])
|
89 |
|
90 |
-
#
|
91 |
col1, col2 = st.columns([6, 1])
|
92 |
with col1:
|
93 |
user_input = st.text_input("Enter customer message:", key="customer_input")
|
94 |
with col2:
|
95 |
if st.button("Analyze"):
|
96 |
if user_input.strip():
|
97 |
-
session["chat"].append({"role": "user", "content": user_input})
|
98 |
emotion_result = emotion_classifier(user_input)
|
99 |
emotion_label = get_emotion_label(emotion_result, user_input)
|
100 |
emotion_score = get_emotion_score(emotion_label)
|
101 |
|
|
|
|
|
102 |
intent_result = intent_classifier(user_input, candidate_tasks)
|
103 |
top_intents = [label for label, score in zip(intent_result['labels'], intent_result['scores']) if score > 0.15][:3]
|
104 |
|
@@ -126,7 +123,7 @@ with col2:
|
|
126 |
session["agent_reply"] = ""
|
127 |
st.rerun()
|
128 |
|
129 |
-
#
|
130 |
if session["support_required"]:
|
131 |
st.markdown(f"### {session['support_required']}")
|
132 |
|
@@ -140,7 +137,7 @@ if st.button("Send Reply"):
|
|
140 |
session["support_required"] = ""
|
141 |
st.rerun()
|
142 |
|
143 |
-
#
|
144 |
if session["system_result"] is not None:
|
145 |
st.markdown("#### Customer Status")
|
146 |
st.markdown(f"- **Emotion:** {session['system_result']['emotion'].capitalize()}")
|
@@ -159,4 +156,3 @@ if st.button("End Conversation"):
|
|
159 |
session["user_input"] = ""
|
160 |
st.success("Conversation ended and cleared.")
|
161 |
st.rerun()
|
162 |
-
|
|
|
5 |
|
6 |
login(os.environ["HF_TOKEN"])
|
7 |
|
|
|
|
|
8 |
emotion_classifier = pipeline("text-classification", model="shengqizhao0124/emotion_trainer", return_all_scores=True)
|
9 |
intent_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
10 |
text_generator = pipeline("text2text-generation", model="declare-lab/flan-alpaca-base")
|
11 |
|
|
|
|
|
12 |
candidate_tasks = [
|
13 |
"change mobile plan", "top up balance", "report service outage",
|
14 |
"ask for billing support", "reactivate service", "cancel subscription",
|
|
|
44 |
else:
|
45 |
return 0.2
|
46 |
|
|
|
47 |
def generate_response(intent, human=True):
|
48 |
if human:
|
49 |
prompt = (
|
|
|
55 |
else:
|
56 |
return f"[Below is a link to the service you needοΌ{intent} β https://support.example.com/{intent.replace(' ', '_')}]\\n[If your problem still can not be solved, welcome to continue to consult, we will continue to serve you!]"
|
57 |
|
|
|
58 |
st.set_page_config(page_title="Smart Customer Support Assistant", layout="wide")
|
59 |
st.sidebar.title("π Customer Selector")
|
60 |
|
|
|
74 |
session = st.session_state.chat_sessions[selected_customer]
|
75 |
st.title("Smart Customer Support Assistant (for Agents Only)")
|
76 |
|
77 |
+
# Conversation UI
|
78 |
st.markdown("### Conversation")
|
79 |
for msg in session["chat"]:
|
80 |
avatar = "π€" if msg['role'] == 'user' else ("π€" if msg.get("auto") else "π¨βπΌ")
|
81 |
with st.chat_message(msg['role'], avatar=avatar):
|
82 |
+
if msg["role"] == "user" and "emotion" in msg:
|
83 |
+
st.markdown(f"<div style='text-align:right;font-size:0.9em;color:gray;'>Emotion: {msg['emotion'].capitalize()}</div>", unsafe_allow_html=True)
|
84 |
st.markdown(msg['content'])
|
85 |
|
86 |
+
# Input & Analyze
|
87 |
col1, col2 = st.columns([6, 1])
|
88 |
with col1:
|
89 |
user_input = st.text_input("Enter customer message:", key="customer_input")
|
90 |
with col2:
|
91 |
if st.button("Analyze"):
|
92 |
if user_input.strip():
|
|
|
93 |
emotion_result = emotion_classifier(user_input)
|
94 |
emotion_label = get_emotion_label(emotion_result, user_input)
|
95 |
emotion_score = get_emotion_score(emotion_label)
|
96 |
|
97 |
+
session["chat"].append({"role": "user", "content": user_input, "emotion": emotion_label})
|
98 |
+
|
99 |
intent_result = intent_classifier(user_input, candidate_tasks)
|
100 |
top_intents = [label for label, score in zip(intent_result['labels'], intent_result['scores']) if score > 0.15][:3]
|
101 |
|
|
|
123 |
session["agent_reply"] = ""
|
124 |
st.rerun()
|
125 |
|
126 |
+
# Agent panel
|
127 |
if session["support_required"]:
|
128 |
st.markdown(f"### {session['support_required']}")
|
129 |
|
|
|
137 |
session["support_required"] = ""
|
138 |
st.rerun()
|
139 |
|
140 |
+
# Show customer analysis
|
141 |
if session["system_result"] is not None:
|
142 |
st.markdown("#### Customer Status")
|
143 |
st.markdown(f"- **Emotion:** {session['system_result']['emotion'].capitalize()}")
|
|
|
156 |
session["user_input"] = ""
|
157 |
st.success("Conversation ended and cleared.")
|
158 |
st.rerun()
|
|