JoshuaZywoo's picture
Update app.py
b35a08e verified
raw
history blame
4.18 kB
import streamlit as st
from transformers import pipeline
import re
# Load models
emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", top_k=1)
intent_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
text_generator = pipeline("text2text-generation", model="google/flan-t5-base", max_new_tokens=100)
# Candidate intents
candidate_tasks = [
"change mobile plan",
"top up balance",
"report service outage",
"ask for billing support",
"reactivate service",
"cancel subscription",
"check account status",
"upgrade device"
]
# Emotion scoring
urgent_emotions = {"anger", "annoyance", "disgust", "frustration", "sadness"}
moderate_emotions = {"confusion", "concern", "nervousness", "fear"}
def get_emotion_score(emotion):
if emotion in urgent_emotions:
return 1.0
elif emotion in moderate_emotions:
return 0.6
else:
return 0.2
def get_content_score(text, top_intents):
score = 0.0
trigger_words = ["out of service", "urgent", "not working", "stopped", "can't", "immediately"]
if any(kw in text.lower() for kw in trigger_words):
score += 0.3
if any(label in ["top up balance", "reactivate service", "report service outage"] for label in top_intents):
score += 0.4
if any(label in ["change mobile plan", "ask for billing support"] for label in top_intents):
score += 0.2
return min(score + 0.1, 1.0)
def generate_reply(input_text, intent):
prompt = f"Generate a polite and helpful customer service reply to this intent: '{intent}'. Customer said: '{input_text}'"
return text_generator(prompt)[0]['generated_text']
# UI
st.set_page_config(page_title="Customer Support Assistant", layout="centered")
st.title("πŸ“ž Smart Customer Support Assistant (for Agents Only)")
user_input = st.text_area("Enter customer's message or complaint:", height=150)
if st.button("Analyze Message"):
if user_input.strip() == "":
st.warning("Please enter a customer message.")
else:
with st.spinner("Processing..."):
# Emotion detection
emotion_result = emotion_classifier(user_input)
emotion_label = emotion_result[0]['label']
emotion_score = get_emotion_score(emotion_label)
# Intent detection
intent_result = intent_classifier(user_input, candidate_tasks)
top_intents = [label for label, score in zip(intent_result['labels'], intent_result['scores']) if score > 0.2]
# Content score
content_score = get_content_score(user_input, top_intents)
# Final decision score
final_score = (0.5 * emotion_score) + (0.5 * content_score)
st.subheader("🧾 System Summary")
if final_score < 0.5:
st.markdown("### 🟒 This message was handled automatically.")
if top_intents:
auto_intent = top_intents[0]
auto_reply = generate_reply(user_input, auto_intent)
st.markdown("#### πŸ€– Auto-Response Sent to User:")
st.success(auto_reply)
else:
st.info("No clear intent detected. A general auto-reply was used.")
else:
st.markdown("### πŸ”΄ Human Support Required")
# Customer Profile Summary
st.markdown("#### πŸ‘€ Customer Status:")
st.write(f"- **Emotion detected**: {emotion_label.capitalize()}")
st.write(f"- **Tone**: {'Urgent' if emotion_score > 0.8 else 'Concerned' if emotion_score > 0.5 else 'Calm'}")
if top_intents:
st.markdown("#### 🧩 Detected Customer Needs:")
for intent in top_intents:
reply = generate_reply(user_input, intent)
st.markdown(f"**β€’ {intent.capitalize()}**")
st.write(f"Recommended Action: {reply}")
else:
st.warning("No clear intent detected. Manual review recommended.")