import os import time from PIL import Image import tensorflow as tf import tensorflow_hub as hub from numpy import asarray from tensorflow.python.ops.numpy_ops import np_config np_config.enable_numpy_behavior() os.environ["TFHUB_DOWNLOAD_PROGRESS"] = "True" from huggingface_hub import from_pretrained_keras def tensor_to_image(tensor): tensor = tf.cast(tf.clip_by_value(tensor, 0, 255), tf.uint8) tensor = Image.fromarray(tensor.numpy()) tensor.save('upscaled_image.jpg') return 'upscaled_image.jpg' def request_to_image(request): image = request.files.get('image', False) print(image) if image: return asarray(Image.open(image)) else:return asarray(Image.open(request.files['image'])) def _monet(image, upscale=False): IMAGE_SIZE = (256, 256) def decode_image(image): #image = tf.image.decode_jpeg(image, channels=3) image = (tf.cast(image, tf.float32) / 127.5) - 1 image = tf.reshape(image, [*IMAGE_SIZE, 3]) return image #new_model = tf.keras.models.load_model('models/monet_generator', compile=False) new_model = from_pretrained_keras("JoshuaPeddle/MonetGenerator") #new_model.summary() image = tf.image.resize(image, IMAGE_SIZE) image = decode_image(image) image = tf.expand_dims(image, 0) start = time.time() prediction = new_model(image, training=False) prediction = tf.reshape(prediction, [256, 256, 3]) prediction = (prediction + 1) / 2 prediction = tf.image.convert_image_dtype(prediction, tf.uint8) print("Time Taken: %f" % (time.time() - start)) if upscale: return _upscale(prediction) return tensor_to_image(prediction) def _upscale(image): SAVED_MODEL_PATH = "https://tfhub.dev/captain-pool/esrgan-tf2/1" def preprocess_image(_image): """ Loads image from path and preprocesses to make it model ready Args: image_path: Path to the image file """ #hr_image = tf.image.decode_image(tf.io.read_file(image_path)) hr_image = _image # If PNG, remove the alpha channel. The model only supports # images with 3 color channels. if hr_image.shape[-1] == 4: hr_image = hr_image[...,:-1] hr_size = (tf.convert_to_tensor(hr_image.shape[:-1]) // 4) * 4 hr_image = tf.image.crop_to_bounding_box(hr_image, 0, 0, hr_size[0], hr_size[1]) hr_image = tf.cast(hr_image, tf.float32) return tf.expand_dims(hr_image, 0) hr_image = preprocess_image(image) model = hub.load(SAVED_MODEL_PATH) start = time.time() fake_image = model(hr_image) fake_image = tf.squeeze(fake_image) print("Time Taken: %f" % (time.time() - start)) fake_image = tf.image.resize(fake_image, (512,512)) return tensor_to_image(fake_image)