Spaces:
Sleeping
Sleeping
import os | |
import time | |
from PIL import Image | |
import tensorflow as tf | |
import tensorflow_hub as hub | |
from numpy import asarray | |
from tensorflow.python.ops.numpy_ops import np_config | |
np_config.enable_numpy_behavior() | |
os.environ["TFHUB_DOWNLOAD_PROGRESS"] = "True" | |
from huggingface_hub import from_pretrained_keras | |
def tensor_to_image(tensor): | |
tensor = tf.cast(tf.clip_by_value(tensor, 0, 255), tf.uint8) | |
tensor = Image.fromarray(tensor.numpy()) | |
tensor.save('upscaled_image.jpg') | |
return 'upscaled_image.jpg' | |
def request_to_image(request): | |
image = request.files.get('image', False) | |
print(image) | |
if image: | |
return asarray(Image.open(image)) | |
else:return asarray(Image.open(request.files['image'])) | |
def _monet(image, upscale=False): | |
IMAGE_SIZE = (256, 256) | |
def decode_image(image): | |
#image = tf.image.decode_jpeg(image, channels=3) | |
image = (tf.cast(image, tf.float32) / 127.5) - 1 | |
image = tf.reshape(image, [*IMAGE_SIZE, 3]) | |
return image | |
#new_model = tf.keras.models.load_model('models/monet_generator', compile=False) | |
new_model = from_pretrained_keras("JoshuaPeddle/MonetGenerator") | |
#new_model.summary() | |
image = tf.image.resize(image, IMAGE_SIZE) | |
image = decode_image(image) | |
image = tf.expand_dims(image, 0) | |
start = time.time() | |
prediction = new_model(image, training=False) | |
prediction = tf.reshape(prediction, [256, 256, 3]) | |
prediction = (prediction + 1) / 2 | |
prediction = tf.image.convert_image_dtype(prediction, tf.uint8) | |
print("Time Taken: %f" % (time.time() - start)) | |
if upscale: | |
return _upscale(prediction) | |
return tensor_to_image(prediction) | |
def _upscale(image): | |
SAVED_MODEL_PATH = "https://tfhub.dev/captain-pool/esrgan-tf2/1" | |
def preprocess_image(_image): | |
""" Loads image from path and preprocesses to make it model ready | |
Args: | |
image_path: Path to the image file | |
""" | |
#hr_image = tf.image.decode_image(tf.io.read_file(image_path)) | |
hr_image = _image | |
# If PNG, remove the alpha channel. The model only supports | |
# images with 3 color channels. | |
if hr_image.shape[-1] == 4: | |
hr_image = hr_image[...,:-1] | |
hr_size = (tf.convert_to_tensor(hr_image.shape[:-1]) // 4) * 4 | |
hr_image = tf.image.crop_to_bounding_box(hr_image, 0, 0, hr_size[0], hr_size[1]) | |
hr_image = tf.cast(hr_image, tf.float32) | |
return tf.expand_dims(hr_image, 0) | |
hr_image = preprocess_image(image) | |
model = hub.load(SAVED_MODEL_PATH) | |
start = time.time() | |
fake_image = model(hr_image) | |
fake_image = tf.squeeze(fake_image) | |
print("Time Taken: %f" % (time.time() - start)) | |
fake_image = tf.image.resize(fake_image, (512,512)) | |
return tensor_to_image(fake_image) |