|
import os |
|
import time |
|
from PIL import Image |
|
import tensorflow as tf |
|
import tensorflow_hub as hub |
|
from numpy import asarray |
|
from tensorflow.python.ops.numpy_ops import np_config |
|
np_config.enable_numpy_behavior() |
|
os.environ["TFHUB_DOWNLOAD_PROGRESS"] = "True" |
|
from huggingface_hub import from_pretrained_keras |
|
def tensor_to_image(tensor): |
|
tensor = tf.cast(tf.clip_by_value(tensor, 0, 255), tf.uint8) |
|
tensor = Image.fromarray(tensor.numpy()) |
|
tensor.save('upscaled_image.jpg') |
|
return 'upscaled_image.jpg' |
|
|
|
|
|
def request_to_image(request): |
|
image = request.files.get('image', False) |
|
print(image) |
|
if image: |
|
return asarray(Image.open(image)) |
|
else:return asarray(Image.open(request.files['image'])) |
|
|
|
|
|
def _monet(image, upscale=False): |
|
IMAGE_SIZE = (256, 256) |
|
def decode_image(image): |
|
|
|
image = (tf.cast(image, tf.float32) / 127.5) - 1 |
|
image = tf.reshape(image, [*IMAGE_SIZE, 3]) |
|
return image |
|
|
|
|
|
new_model = from_pretrained_keras("JoshuaPeddle/MonetGenerator") |
|
|
|
image = tf.image.resize(image, IMAGE_SIZE) |
|
image = decode_image(image) |
|
|
|
image = tf.expand_dims(image, 0) |
|
start = time.time() |
|
prediction = new_model(image, training=False) |
|
prediction = tf.reshape(prediction, [256, 256, 3]) |
|
prediction = (prediction + 1) / 2 |
|
prediction = tf.image.convert_image_dtype(prediction, tf.uint8) |
|
print("Time Taken: %f" % (time.time() - start)) |
|
|
|
if upscale: |
|
return _upscale(prediction) |
|
|
|
return tensor_to_image(prediction) |
|
|
|
|
|
|
|
|
|
def _upscale(image): |
|
SAVED_MODEL_PATH = "https://tfhub.dev/captain-pool/esrgan-tf2/1" |
|
def preprocess_image(_image): |
|
""" Loads image from path and preprocesses to make it model ready |
|
Args: |
|
image_path: Path to the image file |
|
""" |
|
|
|
hr_image = _image |
|
|
|
|
|
if hr_image.shape[-1] == 4: |
|
hr_image = hr_image[...,:-1] |
|
hr_size = (tf.convert_to_tensor(hr_image.shape[:-1]) // 4) * 4 |
|
hr_image = tf.image.crop_to_bounding_box(hr_image, 0, 0, hr_size[0], hr_size[1]) |
|
hr_image = tf.cast(hr_image, tf.float32) |
|
return tf.expand_dims(hr_image, 0) |
|
|
|
|
|
hr_image = preprocess_image(image) |
|
model = hub.load(SAVED_MODEL_PATH) |
|
|
|
start = time.time() |
|
fake_image = model(hr_image) |
|
fake_image = tf.squeeze(fake_image) |
|
print("Time Taken: %f" % (time.time() - start)) |
|
fake_image = tf.image.resize(fake_image, (512,512)) |
|
return tensor_to_image(fake_image) |