# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Exact Match metric.""" import re import string import datasets import numpy as np import evaluate _DESCRIPTION = """ returns a score that indicates how close the bash command generated is to the actual command with a perfect score out of 1.0 """ _KWARGS_DESCRIPTION = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 1.0, inclusive. Examples: >>> exact_match = evaluate.load("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 2)) 0.25 >>> exact_match = evaluate.load("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 2)) 0.5 >>> exact_match = evaluate.load("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 2)) 0.75 >>> exact_match = evaluate.load("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 2)) 1.0 >>> exact_match = evaluate.load("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It's like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It's like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 2)) 0.33 """ _CITATION = """ """ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class nl2bash_m(evaluate.Metric): def _info(self): return evaluate.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Value("string", id="sequence"), } ), reference_urls=[], ) def get_score(self, pred, ref): if not pred and not ref: return 1 cor = 0 for i in range(min(len(pred), len(ref))): if (pred[i] == ref[i]): cor += 1 return cor/max(len(pred), len(ref)) def _compute( self, predictions, references, cmd_weight = 0.65, opt_weight = 0.25, arg_weight = 0.15, ignore_case=False, ignore_numbers=False, ): predictions = np.asarray(predictions) references = np.asarray(references) if ignore_case: predictions = np.char.lower(predictions) references = np.char.lower(references) if ignore_numbers: repl_table = string.digits.maketrans("", "", string.digits) predictions = np.char.translate(predictions, table=repl_table) references = np.char.translate(references, table=repl_table) final_score = 0 for pred, ref in zip(predictions, references): print(pred, ref) pred_words, ref_words = pred[0].split(), ref[0].split() # Get the cmd of predicted and ref cmd_corr = 1 if pred_words.pop(0)==ref_words.pop(0) else 0 # Get the option of predicted and ref pred_option = [ x for x in pred_words if x[0] == '-'] ref_option = [ x for x in ref_words if x[0] == '-'] # Get the arguments of predicted and ref pred_args = [ x for x in pred_words if x[0] != '-'] ref_args = [ x for x in ref_words if x[0] != '-'] # Calculate scores cmd_score = cmd_weight * cmd_corr opt_score = opt_weight * self.get_score(pred_option, ref_option) arg_score = arg_weight * self.get_score(pred_args, ref_args) score = cmd_score + opt_score + arg_score final_score += score print(score) final_score = final_score/len(self.preds) print("f_s: ", final_score) return {"nl2bash_m": (final_score)}