Spaces:
Runtime error
Runtime error
Commit
·
5d4ea36
1
Parent(s):
b6eec52
Use HF Model Storage to hold the model.
Browse files
app.py
CHANGED
|
@@ -1,26 +1,36 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
| 3 |
from torchvision.transforms.functional import pil_to_tensor, to_pil_image
|
| 4 |
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
def predict(input_img, input_mask):
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
|
| 15 |
gradio_app = gr.Interface(
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
)
|
| 24 |
|
| 25 |
if __name__ == "__main__":
|
| 26 |
-
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
import os
|
| 4 |
from torchvision.transforms.functional import pil_to_tensor, to_pil_image
|
| 5 |
|
| 6 |
+
MODEL_DIR = "models"
|
| 7 |
+
MODEL_FILENAME = "lama.pt"
|
| 8 |
+
LOCAL_MODEL = os.path.join(MODEL_DIR, MODEL_FILENAME)
|
| 9 |
+
|
| 10 |
+
if not os.path.exists(LOCAL_MODEL):
|
| 11 |
+
from huggingface_hub import hf_hub_download
|
| 12 |
+
REPO_ID = "JosephCatrambone/big-lama-torchscript"
|
| 13 |
+
LOCAL_MODEL = hf_hub_download(repo_id=REPO_ID, filename=MODEL_FILENAME, local_dir=MODEL_DIR, local_dir_use_symlinks=False)
|
| 14 |
+
|
| 15 |
+
model = torch.jit.load(LOCAL_MODEL)
|
| 16 |
|
| 17 |
def predict(input_img, input_mask):
|
| 18 |
+
# numpy gives the image as (w,h,c)
|
| 19 |
+
# Image shape should be (1, 3, 512, 512) and be in the range 0-1.
|
| 20 |
+
# Mask shape should be (1, 1, 512, 512) AND have values 0.0 or 1.0, not in-between.
|
| 21 |
+
#out = model(torch.tensor(input_img[None, (2,0,1), :, :])/255.0, torch.tensor(1 * (input_mask[:,:,0] > 0)).unsqueeze(0))
|
| 22 |
+
out = model((pil_to_tensor(input_img.convert('RGB')) / 255.0).unsqueeze(0), 1 * (pil_to_tensor(input_mask.convert('L')) > 0).unsqueeze(0))[0]
|
| 23 |
+
return to_pil_image(out)
|
| 24 |
|
| 25 |
gradio_app = gr.Interface(
|
| 26 |
+
predict,
|
| 27 |
+
inputs=[
|
| 28 |
+
gr.Image(label="Select Base Image", sources=['upload',], type="pil"),
|
| 29 |
+
gr.Image(label="Select Image Mask (White will be inpainted)", sources=['upload',], type="pil"),
|
| 30 |
+
],
|
| 31 |
+
outputs=[gr.Image(label="Inpainted Image"),],
|
| 32 |
+
title="LAMA Inpainting",
|
| 33 |
)
|
| 34 |
|
| 35 |
if __name__ == "__main__":
|
| 36 |
+
gradio_app.launch()
|