from typing import Any, List, Callable import cv2 import threading import gfpgan import os import logging import roop.globals import roop.processors.frame.core from roop.core import update_status from roop.face_analyser import get_one_face from roop.typing import Frame, Face from roop.utilities import conditional_download, resolve_relative_path, is_image, is_video FACE_ENHANCER = None THREAD_SEMAPHORE = threading.Semaphore() THREAD_LOCK = threading.Lock() NAME = 'ROOP.FACE-ENHANCER' # Configure logging logging.basicConfig(level=logging.INFO) def get_face_enhancer() -> Any: global FACE_ENHANCER with THREAD_LOCK: if FACE_ENHANCER is None: model_path = resolve_relative_path('../models/GFPGANv1.4.pth') try: FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=5) # type: ignore[attr-defined] logging.info(f"Loaded face enhancer model from {model_path}") except Exception as e: logging.error(f"Failed to load face enhancer model: {e}") FACE_ENHANCER = None return FACE_ENHANCER def pre_check() -> bool: download_directory_path = resolve_relative_path('../models') try: conditional_download(download_directory_path, ['https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/GFPGANv1.4.pth']) logging.info("Pre-check completed successfully.") return True except Exception as e: logging.error(f"Pre-check failed: {e}") return False def pre_start() -> bool: try: if not is_image(roop.globals.target_path) and not is_video(roop.globals.target_path): update_status('Select an image or video for target path.', NAME) return False logging.info("Pre-start checks passed.") return True except Exception as e: logging.error(f"Pre-start check failed: {e}") return False def post_process() -> None: global FACE_ENHANCER FACE_ENHANCER = None logging.info("Post-process cleanup done.") def enhance_face(temp_frame: Frame) -> Frame: try: with THREAD_SEMAPHORE: _, _, temp_frame = get_face_enhancer().enhance( temp_frame, paste_back=True ) return temp_frame except Exception as e: logging.error(f"Error enhancing face: {e}") return temp_frame # Return the unmodified frame in case of error def process_frame(source_face: Face, temp_frame: Frame) -> Frame: try: target_face = get_one_face(temp_frame) if target_face: temp_frame = enhance_face(temp_frame) return temp_frame except Exception as e: logging.error(f"Error processing frame: {e}") return temp_frame # Return the unmodified frame in case of error def process_frames(source_path: str, temp_frame_paths: List[str], update: Callable[[], None]) -> None: try: for temp_frame_path in temp_frame_paths: temp_frame = cv2.imread(temp_frame_path) if temp_frame is None: raise ValueError(f"Failed to read frame from path: {temp_frame_path}") result = process_frame(None, temp_frame) cv2.imwrite(temp_frame_path, result) if update: update() logging.info("Frames processed successfully.") except Exception as e: logging.error(f"Error processing frames: {e}") def process_image(source_path: str, target_path: str, output_path: str) -> None: try: target_frame = cv2.imread(target_path) if target_frame is None: raise ValueError("Failed to read target frame.") result = process_frame(None, target_frame) cv2.imwrite(output_path, result) logging.info(f"Image processed and saved to {output_path}.") except Exception as e: logging.error(f"Error processing image: {e}") def process_video(source_path: str, temp_frame_paths: List[str]) -> None: try: roop.processors.frame.core.process_video(None, temp_frame_paths, process_frames) logging.info("Video processing completed.") except Exception as e: logging.error(f"Error processing video: {e}")